欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    4.1 函数的单调性与极值(第一课时) 课件 (北师大选修1-1).ppt

    • 资源ID:66720673       资源大小:265KB        全文页数:15页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    4.1 函数的单调性与极值(第一课时) 课件 (北师大选修1-1).ppt

    判断函数判断函数 的单调性的单调性 解解(定义法定义法):设):设 则则 XY图象法图象法问题提出函数(1)(2)的导数都是正的,函数(1)(2)都是递增的,函数(3)的导数是负的,这个函数是递减的.(1)(3)(2)(4)观察以下两个函数的单调性与导数的关系.演示1演示2通过以上的实例可以看出,导函数的符号与函数的单调性之间有如下的关系:例题讲解分析:根据上面的结论,我们知道函数的单调区间与函数导数的符号有关,因此,可以通过分析导数的符号求出函数的单调区间.y32Ox2040方法归纳由导数来求函数的单调区间步骤:1,先求出函数的导函数.2,由导函数得到相应的不等式.3,由不等式得相应的单调区间.1,确定函数确定函数 在哪个区间内是增函数,在哪个区间内是增函数,哪个区间内是减函数哪个区间内是减函数解:解:当当 时,时,是增函数;是增函数;令令 ,解得,解得 ,因此,因此,当当 时,时,是减函数;是减函数;再令再令 ,解得,解得 ,因此,因此,课堂练习 2,确定函数确定函数 在哪个区间内是增函数,在哪个区间内是增函数,哪个区间内是减函数哪个区间内是减函数解:解:令令 ,解得,解得 或或 ,当当 时,时,是增函数;是增函数;因此,因此,当当 时,时,是增函数;是增函数;再令再令 ,解得,解得 ,当当 时,时,是减函数;是减函数;因此,因此,导数与函数的单调性有什么关系?如何由导函数来求函数的单调区间?

    注意事项

    本文(4.1 函数的单调性与极值(第一课时) 课件 (北师大选修1-1).ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开