圆锥曲线复习小结(1)(1).ppt
圆锥曲线小结复习目标复习目标 1)1)掌握椭圆的定义,标准方程和椭圆的掌握椭圆的定义,标准方程和椭圆的几何性质几何性质 2)2)掌握双曲线的定义,标准方程和双曲掌握双曲线的定义,标准方程和双曲线的几何性质线的几何性质 3)3)掌握抛物线的定义,标准方程和抛物掌握抛物线的定义,标准方程和抛物线的几何性质线的几何性质 曲线与方程曲线与方程方程与曲线方程与曲线圆锥曲线知识应用圆锥曲线知识应用二、弦长、面积问题二、弦长、面积问题三、中点、对称问题三、中点、对称问题四、最值问题四、最值问题五、其它综合问题五、其它综合问题一、确定圆锥曲线基本元素一、确定圆锥曲线基本元素,标准方程问题标准方程问题椭圆椭圆双曲线双曲线抛物线抛物线几何条件几何条件 与两个定点与两个定点的距离的和等于的距离的和等于常数常数 与两个定点的与两个定点的距离的差的绝对距离的差的绝对值等于常数值等于常数 与一个定点和与一个定点和一条定直线的距一条定直线的距离相等离相等标准方程标准方程图图形形顶点坐标顶点坐标(a,0),(0,b)(a,0)(0,0)椭圆、双曲线、抛物线的标准方程和图形性质椭圆、双曲线、抛物线的标准方程和图形性质椭圆椭圆双曲线双曲线抛物线抛物线对称性对称性X X轴,长轴长轴,长轴长2a,2a,Y Y轴,短轴长轴,短轴长2b2bX X轴,实轴长轴,实轴长2a,2a,Y Y轴,虚轴长轴,虚轴长2b2bX X轴轴焦点坐标焦点坐标 (c,0)c,0)c c2 2=a=a2 2-b-b2 2 (c,0)c,0)c c2 2=a=a2 2+b+b2 2 (p/2,0)p/2,0)离心率离心率 e=c/ae=c/a 0e1 e=1准线方程准线方程 x=-p/2渐近线方程渐近线方程 y=(b/a)x椭圆、双曲线、抛物线的标准方程和图形性质椭圆、双曲线、抛物线的标准方程和图形性质1.动点动点P到两定点到两定点F1(-3,0),F2(3,0)的距离的距离之和等于之和等于6,则点,则点P的轨迹的轨迹_线段线段F1F2基础练习基础练习2.椭椭圆圆 +=1的的焦焦点点坐坐标标是是 ,若若弦弦CD过左焦点过左焦点F1,则则F2CD的周长是的周长是 .(,0)163.已已知知M为为线线段段AB的的中中点点,|AB|=6,动动点点P满满足足|PA|+|PB|=8,则则PM的的最最大大值值为为 ,最最小值为小值为 .45.方方程程 =1表表示示双双曲曲线线,则则实实数数k的的取取值值范围是范围是 .(-,-1)(1,+)6.若若双双曲曲线线 =1的的两两条条渐渐近近线线互互相相垂垂直直,则双曲线的离心率则双曲线的离心率 .e=7.若若双双曲曲线线C的的焦焦点点和和椭椭圆圆 =1的的焦焦点点相相同同,且且过过点点(3 ,2),则则双双曲曲线线C的的方方程是程是 .=1