欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    线性代数教学资料-cha课件.ppt

    • 资源ID:66743988       资源大小:314KB        全文页数:30页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数教学资料-cha课件.ppt

    Li Jie12 Vectors in 2-space and 3-spaceLi Jie2Overview In this chapter we review the related concepts of physical vectors,geometric vectors,and algebraic vectors.To provide maximum geometric insight,we concentrate on vectors in two-space and three-space.Later,in Chapter 3,we will generalize many of the ideas developed in this chapter and apply them to a study of vectors in n-space,that is,to vectors in Rn.A major emphasis in Chapter 3 is on certain fundamental ideas such as subspaces of Rn and the dimension of a subspace.As we will see in Chapter 3,concepts such as subspace and dimension are directly related to the geometrically familiar notions of lines and planes in three-space.Li Jie3Core sectionsVectors in the planeVectors in spaceThe dot product and the cross productLines and planes in space Li Jie42.1 Vectors in the plane1.Three types of vectors(1)Physical vectors:A physical quantity having both magnitude and direction is called a vector.Typical physical vectors are forces,displacements,velocities,accelerations.Li Jie5(2)Geometric vectors:The directed line segment from point A to point B is called a geometric vector and is denoted byFor a given geometric vector ,the endpoint A is called the initial point and B is the terminal point.Li Jie6(3)Equality of geometric vectorsAll geometric vectors having the same direction and magnitude will be regarded as equal,regardless of whether or not they have the same endpoints.xyEFABCDLi Jie7(4)Position vectorsxyABOPLi Jie8(5)Components of a vectorLi Jie9Theorem2.1.1:Let and be geometric vectors.Then if and only if their components are equal.(6)An equality test for Geometric VectorsLi Jie10(7)Algebraic vectors:Theorem2.1.2:Let be a geometric vector,with A=(a1,a2)and B=(b1,b2).Then can be represented by the algebraic vector Li Jie112.Using algebraic vectors to calculate the sum of geometric vectorsTheorem2.1.2:Let u and v be geometric vectors with algebraic representations given byThen the sum u+v has the following algebraic representation:Li Jie123.Scalar multiplicationTheorem2.1.3:Let u be a geometric vectors with algebraic representations given byThen the scalar multiple cu has the following algebraic representation:Li Jie134.Subtracting geometric vectors5.Parallel vectorsVectors u and v are parallel if there is a nonzero scalar c such that v=cu.If c0,we say u and v have the same direction but if c0,we say u and v have the opposite direction.6.Lengths of vectors and unit vectors7.The basic vectors i and j2.1 Exercise P126 26Li Jie142.2 Vectors in space1.Coordinate axes in three space2.The right-hand rule3.Rectangular coordinates for points in three space axis;coordinate planes;octants4.The distance formulaTheorem2.2.1:Let P=(x1,y1,z1)and Q=(x2,y2,z2)be two points in three space.The distance between P and Q,denoted by d(P,Q),is given byLi Jie155.The midpoint formulaTheorem2.2.2:Let P=(x1,y1,z1)and Q=(x2,y2,z2)be two points in three space.Let M denote the midpoint of the line segment joining P and Q.Then,M is given by6.Geometric vectors and their components7.Addition and scalar multiplication for vectors8.Parallel vectors,lengths of vectors,and unit vectors9.The basic unit vectors in three spaceLi Jie162.3 The dot product and the cross product1.The dot product of two vectorsDefinition 2.3.2:Let u and v are two-dimensional vectors,then the dot product of u and v,denoted uv,is defined by u v=u1v1+u2v2.Let u and v are three-dimensional vectors,then the dot product of u and v,denoted uv,is defined by u v=u1v1+u2v2+u3v3.Definition 2.3.1:Let u and v are vectors,then the dot product of u and v,denoted uv,is defined by u v=|u|v|cos.where is the angle of vectors u and v.Li Jie17Li Jie182.The angle between two vectorsu v=|u|v|cos.3.Algebraic properties of the dot productLi Jie194.Orthogonal Vectors(正交向量正交向量)When=/2 we say that u and v are perpendicular or orthogonal.Theorem 2.3.1:Let u and v are vectors,then u and v are orthogonal if and only if u v=0.In the plane,the basic unit vectors i and j are orthogonal.In three space,the basic unit vectors i,j and k are mutually orthogonal.Li Jie205.Projections6.The cross productDefinition 2.3.3:Let u and v are vectors,then the cross product of u and v,denoted uv,is a vector that it is orthogonal to u and v,and u,v,uv is right-hand system,and the norm of the vector is|uv|=|u|v|sin.where is the angle of vectors u and v.qvuUnit vector,directionLi Jie217.Remember the form of the cross product(two methods)determinantLi Jie228.Algebraic properties of the cross product9.Geometric properties of the cross productLi Jie2310.Triple products(三重积)(三重积)11.Tests for collinearity and coplanarity2.3 Exercise P148 48Theorem:Let u,v and w be nonzero three dimensional vectors.(a)u and v are collinear if and only if uv=0.(b)u,v and w are coplanar if and only if u(vw).Li Jie242.4 Lines and planes in space1.The equation of a line in xy-planeyxOP0=(x0,y0).lLi Jie252.The equation of a line in three space(1)Point and directional vector form equation of a lineLi Jie26(2)Parametric equations of a lineLi Jie27Example1:Let L be the through P0=(2,1,6),having direction vector u given by u=4,-1,3T.(a)Find parametric equations for the line L.(b)Does the line L intersect the xy-plane?If so,what are the coordinates of the point of intersection?Example2:Find parametric equations for the line L passing through P0=(2,5,7)and the point P1=(4,9,8).Li Jie282.The equation of a plane in three spacePoint and normal vector form equation of a planeLi Jie29Example3:Find the equation of the plane containing the point P0=(1,3,-2)and having normal n=5,-2,2T.Example4:Find the equation of the plane passing through the points P0=(1,3,2),P1=(2,0,-1),and P2=(4,5,1).Li Jie30The relationship between two lines or two planesTwo linesA line and a planeTwo plane

    注意事项

    本文(线性代数教学资料-cha课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开