安徽省亳州市张集中学2021年高一数学文模拟试卷含解析.pdf
-
资源ID:66760017
资源大小:607.73KB
全文页数:6页
- 资源格式: PDF
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
安徽省亳州市张集中学2021年高一数学文模拟试卷含解析.pdf
Word 文档下载后(可任意编辑)安徽省亳州市张集中学安徽省亳州市张集中学 2020-20212020-2021 学年高一数学文模拟试卷含学年高一数学文模拟试卷含解析解析一、一、选择题:本大题共选择题:本大题共 1010 小题,每小题小题,每小题 5 5 分,共分,共 5050 分。在每小题给出的四个选项中,只有分。在每小题给出的四个选项中,只有是一个符合题目要求的是一个符合题目要求的1.如图曲线对应的函数是()Ay=|sinx|By=sin|x|Cy=sin|x|Dy=|sinx|参考答案:参考答案:C【考点】35:函数的图象与图象变化【分析】应用排除法解决本题,先从图象的右侧观察知它与正弦曲线一样,可排除一些选项,再从左侧观察又可排除一些,从而可选出答案【解答】解:观察图象知:在 y 轴的右侧,它的图象与函数 y=sinx 相同,排除 A、B;又在 y 轴的左侧,它的图象与函数y=sinx 相同,排除 D;故选 C2.判断下列各命题的真假:(1)向量的长度与向量的长度相等;(2)向量与向量平行,则与的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量和向量是共线向量,则点 A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2 个B、3 个C、4个D、5个参考答案:参考答案:C3.下列图像表示函数图像的是()ABCD参考答案:参考答案:C4.已知函数的一部分图象如右图所示,如果则()A.B.C.D.参考答案:参考答案:C5.已知集合,则()参考答案:参考答案:B略6.过直线 y=2x 上一点 P 作圆 M:的两条切线 l1,l2,A,B 为切点,当直线 l1,l2关于直线 y=2x 对称时,则APB 等于()A30B45C60D90Word 文档下载后(可任意编辑)参考答案:参考答案:C【考点】J7:圆的切线方程【分析】连接 PM、AM,根据圆的性质和轴对称知识,得当切线l1,l2关于直线 l 对称时,直线lPM,且 PM 平分APB因此计算出圆的半径和点M 到直线 l 的距离,在 RtPAM 中利用三角函数定义算出APM 的度数,从而得到APB 的度数【解答】解:连接 PM、AM,可得当切线 l1,l2关于直线 l 对称时,直线 lPM,且射线 PM 恰好是APB 的平分线,圆 M 的方程为(x3)2+(y2)2=,点 M 坐标为(3,2),半径 r=,点 M 到直线 l:2xy=0 的距离为 PM=,由 PA 切圆 M 于 A,得 RtPAM 中,sinAPM=,得APM=30,APB=2APM=60故选:C7.如图,在三棱锥 SABC 中,G1,G2分别是SAB和SAC 的重心,则直线 G1G2与 BC 的位置关系是()A相交 B平行C异面 D以上都有可能参考答案:参考答案:B略8.已知0,那么角是();A.第一或第二象限角 B.第二或第三象限角C.第二或第四象限角 D.第一或第四象限角参考答案:参考答案:B略9.()A.B.C.-D.-参考答案:参考答案:B10.已知函数,当时,y取得最小值 b,则等于()A.3 B.2C.3D.8参考答案:参考答案:C【分析】配凑成可用基本不等式的形式计算出最值与取最值时的x值Word 文档下载后(可任意编辑)【详解】当且仅当即时取等号,即【点睛】在使用均值不等式时需注意“一正二定三相等”缺一不可二、二、填空题填空题:本大题共本大题共 7 7 小题小题,每小题每小题 4 4 分分,共共 2828 分分11.实数 x,y 满足 x2+y2+xy=1,则 x+y 的最小值为参考答案:参考答案:【考点】7F:基本不等式【分析】由 x2+y2+xy=1,可得(x+y)2=1+xy1+,即可得出【解答】解:由 x2+y2+xy=1,可得(x+y)2=1+xy1+,解得:x+y,当且仅当 x=y=时取等号故答案为:12.已知集合至多有一个元素,则的取值范围;若至少有一个元素,则的取值范围。参考答案:参考答案:,13.已知,则_参考答案:参考答案:.【分析】在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为:.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.14.已知,则函数的解析式为 .参考答案:参考答案:15.设=(x,2),=(1,1),则 x=参考答案:参考答案:2【考点】9T:数量积判断两个平面向量的垂直关系【分析】利用向量垂直的坐标公式计算即可【解答】解:因为 ,所以,即 x2=0,解得 x=2故答案为:2【点评】本题主要考查数量积的应用,向量垂直等价为向量的数量积为016.关于有以下命题:若则;图象与图象相同;Word 文档下载后(可任意编辑)在区间上是减函数;图象关于点对称。其中正确的命题是参考答案:参考答案:17.已知在定义域上是减函数,且,则的取值范围是_.参考答案:参考答案:0a0 且解得所以,减去得=20.投资生产 A产品时,每生产 100t 需要资金 200万元,需场地 200,可获利润 300万元;投资生产 B产品时,每生产 100m 需要资金 300 万元,需场地 100,可获利润 200万元。现某单位可使用资金 1400万元,场地 900,问:应作怎样的组合投资,可使获利最大?参考答案:参考答案:解:设生产 A产品 x 百吨,生产 B产品 y百米,利润为 S 百万元,则约束条件为Word 文档下载后(可任意编辑)目标函数为,7 分作出可行域,将目标函数变形为,这是斜率为,随 S 变化的一族直线,是直线在 y轴上的截距,当最大时,S 最大,但直线要与可行域相交。由图可知,使取得最大值得()是两直线21.已知,且.(1)若,求的值;(2)设,若的最大值为,求实数 m 的值.参考答案:参考答案:(1)0 (2)【分析】(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【详解】(1)通过可以算出,即故答案为 0.(2),设,即的最大值为;当时,(满足条件);当时,(舍);当时,(舍)故答案为【点睛】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.22.已知=(cosx,sinx),=(2cosx+sinx,cosx),xR,0,记,且该函数的最小正周期是(1)求 的值;(2)求函数 f(x)的最大值,并且求使 f(x)取得最大值的 x 的集合参考答案:参考答案:【考点】9R:平面向量数量积的运算;HW:三角函数的最值【分析】(1)由已知向量的坐标利用数量积可得f(x)的解析式,再由降幂公式结合辅助角公式化简,由周期公式求得 值;(2)由 f(x)=sin(8x+)+1,可知当 8x+=+2k,即 x=+(kZ)时,sin(8x+)取得最大值 1,并由此求得求使 f(x)取得最大值的 x 的集合【解答】解:(1)=(cosx,sinx),=(2cosx+sinx,cosx),f(x)=cosx?(2cosx+sinx)+sinx?cosx=2cos2x+2sinx?cosx=2?+sin 2x=sin 2x+cos 2x+1=sin(2x+)+1f(x)=sin(2x+)+1,其中 xR,0函数 f(x)的最小正周期是,可得=,=4;Word 文档下载后(可任意编辑)(2)由(1)知,f(x)=当 8x+=+2k,即 x=sin(8x+)+1)取得最大值 1,+,kZ(kZ)时,sin(8x+,此时 x 的集合为x|x=函数 f(x)的最大值是 1+