2023年大数据时代下数据挖掘技术与应用.docx
-
资源ID:66814312
资源大小:14.21KB
全文页数:6页
- 资源格式: DOCX
下载积分:9.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023年大数据时代下数据挖掘技术与应用.docx
2023年大数据时代下数据挖掘技术与应用 大数据时代下数据挖掘技术与应用 【摘要】人类进入信息化时代以后,短短的数年时间,积累了大量的数据,步入了大数据时代,数据技术也就应运而生,成为了一种新的主流技术。而研究数据挖掘技术的理念、方法以及应用领域,将对我国各个领域的未来带来更多的机遇和挑战。本文就大数据时代下数据挖掘技术与应用进行探究。 【关键词】大数据,数据挖掘,互联网 数据挖掘是一门新兴的学科,它诞生于20世纪80年代,主要面向商业应用的人工只能研究领域。从技术角度来看,数据挖掘就是从大量的复杂的、不规则的、随机的、模糊的数据中获取隐含的、人们事先没有发觉的、有潜在价值和知识的过程。从商业角度来说,数据挖掘就是从庞大的数据库中抽取、转换、分析一些潜在规律和价值,从中获取辅助商业决策的关键信息和有用知识。 1.数据挖掘的基本分析方法 分析方法是数据挖掘的核心工作,通过科学可靠的算法才能实现数据的挖掘,找出数据中潜在的规律,通过不同的分析方法,将解决不同类型的问题。目前常用的方法有聚类分析、特征数据分析法、关联性分析等。 1.1聚类分析法。简单来说聚类分析就是通过将数据对象进行聚类分组,然后形成板块,将毫无逻辑的数据变成了有联系性的分组数据,然后从其中获取具有一定价值的数据内容进行进一步的利用。由于这种分析方法不能够较好的就数据类别、属性进行分类,所以聚类分析法一般都运用心理学、统计学、数据识别等方面。 1.2特征性数据分析法。网络数据随着信息时代的到来变成了数据爆炸式,其数据资源十分广泛并且得到了一定的普及,如何就网络爆炸式数据进行关于特性的分类就成为了当下数据整理分类的主要内容。此外还有很多方法都是通过计算机来进行虚拟数据的分类,寻找数据之间存在的普遍规律性完成数据的特性分析从而进行进一步分类。 1.3关联性分析法。有时数据本身存在一定的隐蔽性使得很难通过普通的数据分析法进行数据挖掘和利用,这就需要通过关联性分析法完成对于数据信息的关联性识别,来帮助人力完成对于数据分辨的任务,这种数据分析方法通常是带着某种目的性进行的,因此比较适用于对数据精准度相对较高的信息管理工作。 2.数据挖掘技术的应用 数据挖掘技术的具体流程就是先通过对于海量数据的保存,然后就已有数据中进行分析、整理、选择、转换等,数据的准备工作是数据挖掘技术的前提,也是决定数据挖掘技术效率及质量的主要因素。在完成数据准备工作后进一步对数据进行挖掘,然后对数据进行评估,最后实现运用。因此,数据挖掘能够运用到很多方面。如数据量巨大的互联网行业、天文学、气象学、生物技术,以及医疗保健、教育教学、银行、金融、零售等行业。通过数据挖掘技术将大数据融合在各种社会应用中,数据挖掘的结果参与到政府、企业、个人的决策中,发挥数据挖掘的社会价值,改变人们的生活方式,最大化数据挖掘的积极作用。以教育行业为例,探究数据挖掘技术在高校教育教学活动中的应用。 2.1在高校管理中的应用。数据挖掘技术在高校管理的内容主要包括:高校招生录取工作、贫困生选定以及优秀生评定等。高校每年的招生工作是学校可持续发展的重要环节,直接影响到高校教学质量以及发展情况。比如数据挖掘技术在高校管理中的应用主要是对学生高考成绩、志愿填报、以及生源来源地等多方面信息进行整理分类汇总。具体步骤是通过进行数据的收集和预处理,建立相关数据模型,采用分类算法,提取和挖掘对用户有用的信息,然后进行数据挖掘的数据存储形式。目前高校数据挖掘技术应用的范围比较广泛,由于高校管理内容比较复杂,因此在其管理内容的每个小部分也开始利用数据挖掘技术进行管理,比如学生成绩管理,课堂教学评价系统等。 2.2在高校课堂教学评价中的应用。数据挖掘技术在高校课堂教学评价系统中的应用主要也是利用关联分析法。首先先对数据进行预处理工作,数据的预处理是数据挖掘技术的关键步骤,并且直接影响着数据挖掘技术的应用效率。数据预处中要将教师的基本信息、教师教授课程以及教师的职称、学历、学生信息以及学生课表相关信息进行数据初始记录。对于教师的评价内容根据高校自身的条件和需求而定,学校教学评价管理部门登录学校教务系统后,将学生所选择的选项对应转换为教师的分值,通过计算机计算总分后得出教师的学期得分。学生对于教师教学的评价在一定程度上也反映了自己的学习情况,如对教师的评价为零分,则说明学生也否定了自己的学习效果。 2.3在高校学生信息管理系统中的应用。高校学生信息管理系统中管理要素主要是学校的领导、任课教师、学生以及家长。系统的功能要包括:对不同的用户设置不同的使用权限;对学生的基本信息以及学生浏览管理网站的记录要做到明确记录;各个学院不同专业的学生课程要能准确公布并允许学生根据实际情况修改;成绩管理要能实现大批量添加及修改;还有比如评优活动、党务管理等具体功能。数据挖掘技术在高校学生信息管理系统中的应用主要是利用决策树的方法。学生信息管理的基本数据就是学生入学时填写的基本信息表,内容包括学生的姓名、学号、考勤以及学习成绩等,这些都是学生特有的属性,学生信息管理利用决策树方法就是将学生的这些属性作为决策元素,监理不同的决策节点,实现对学生全方位的考核和评价,完整的了解到每位学生的具体信息。 2.4高校图书馆信息系统中的应用。数据挖掘技术最基本的应用就是通过对现有的数据进行分析来了解学校图书馆现有资源利用情况,为图书馆的未来建设提供可靠数据。数据挖掘技术能够使图书馆资源得到极大程度的优化整合。比如数据挖掘技术可以对检索记录进行整理,将手工数据转变为电子数据记录。其最大的优势就是利用数据挖掘技术更加全面的分析总结数据库资源,帮助图书馆管理人员对于图书馆信息的补充和调整,还能够为高校图书馆的馆藏工作建设提供有效的引导。数据挖掘还能应用于图书馆的多媒体数字资源,多媒体数据挖掘技术能够更为快捷和准确的为读者提供相应的服务。 3.结语 数据挖掘技术是近几年新产生的网络技术,可是它的广泛应用性受到了很多公司以及研究人员的喜爱。这些年来,伴随着时间的推移以及网络技术的不断发展大数据挖掘技术不断的被更新,开发,而且在金融、管理、教学等行业中都得到了广泛的应用。我相信随着网络技术的不断发展,大数据挖掘技术的应用面将会越来越广。 【参考文献】 1 董彩云 , 曲守宁 .数据挖掘及其在高校教学系统中的应用 J.济南大学学报 ( 自然科学版 ),2023(1): 65-68. 2 陆川,王静静.数据挖掘技术在高校教学管理中的应用研究J.北京:电脑开发与应用,2023,3. 3中国电子科学研究院学报编辑部.大数据时代J.中国电子科技研究院学报,2023(01):41-43.4魏娟,梁静国.基于数据挖掘技术的企业客户关系管理(CRM)J.商业研究,2023(07). 大数据时代下数据挖掘技术与应用 大数据时代下数据挖掘技术的应用 大数据时代数据挖掘技术教学研究论文 大数据时代下云技术在教学中的应用 大数据时代 大数据时代 大数据时代 读大数据时代有感:大数据与小生活 征信数据征信大数据的挖掘与风控应用 大数据时代的“数据解读”