欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的基本性质-单调性.ppt

    • 资源ID:67144762       资源大小:387KB        全文页数:68页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的基本性质-单调性.ppt

    1.3 函数的基本性质函数的基本性质单调性单调性某市年生产总值统计表某市年生产总值统计表生产总值生产总值(亿元亿元)年份年份302010 某高等学校在校学生数统计表某高等学校在校学生数统计表 人数人数(万人万人)年份年份人数人数(人人)某地日平均出生人数统计表某地日平均出生人数统计表年份年份某市耕地面积统计表某市耕地面积统计表 面积面积(万公顷万公顷)年份年份yx1 1-1Oyxxy12yx1 1-1OOyxy2x2 xy21yx1 1-121OOOyyxxy2x2 yx22x xy12yxOyx1 1-121OOOyyxxy2x2 yx22x xyOxyOxyO0 xyOxyOxyOxyOxyOxyOxyO如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyx1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)x1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2函数函数f(x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.在给定区间上任取在给定区间上任取x1,x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.函数函数f(x)在给定在给定区间上为减函数区间上为减函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2增函数、减函数的概念:增函数、减函数的概念:增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:-2321-1y-3-44Ox2-231-3-15-5例例1 右图是定义在右图是定义在闭区间闭区间5,5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上,yf(x)是增函数还是减函数是增函数还是减函数例例1 右图是定义在右图是定义在闭区间闭区间5,5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上,yf(x)是增函数还是减函数是增函数还是减函数-2321-1y-3-44Ox2-231-3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2),2,1),1,3),3,5,解:解:-2321-1y-3-44Ox2-231-3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2),2,1),1,3),3,5,其中其中yf(x)在在5,2),1,3)上是减函数,上是减函数,在区间在区间2,1),3,5上是增函数上是增函数解:解:例例1 右图是定义在右图是定义在闭区间闭区间5,5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上,yf(x)是增函数还是减函数是增函数还是减函数-2321-1y-3-44Ox2-231-3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2),2,1),1,3),3,5,其中其中yf(x)在在5,2),1,3)上是减函数,上是减函数,在区间在区间2,1),3,5上是增函数上是增函数图象法图象法解:解:例例1 右图是定义在右图是定义在闭区间闭区间5,5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上,yf(x)是增函数还是减函数是增函数还是减函数变式变式1:求求yx24x5的单调区间的单调区间.变式变式2:yx2ax4在在2,4上是上是单调函数,求单调函数,求a的取值范围的取值范围.变式变式1:求求yx24x5的单调区间的单调区间.例例2 证明:函数证明:函数f(x)3x2在在R上是增函数上是增函数 判定函数在某个区间上的单调性的判定函数在某个区间上的单调性的方法步骤方法步骤:3.判断上述差的符号判断上述差的符号;4.下结论下结论1.设设x1,x2给定的区间,且给定的区间,且x1x2;2.计算计算f(x1)f(x2)至最简至最简;(若差若差0,则为增函数则为增函数;若差若差0,则为减函数则为减函数).定义法定义法例例2 证明:函数证明:函数f(x)3x2在在R上是增函数上是增函数定义法定义法变式变式1:函数函数f(x)3x2在在R上是增函数上是增函数还是减函数?还是减函数?例例2 证明:函数证明:函数f(x)3x2在在R上是增函数上是增函数定义法定义法变式变式2:函数函数f(x)kxb(k0)在在R上是增上是增函数还是减函数?并证明函数还是减函数?并证明变式变式1:函数函数f(x)3x2在在R上是增函数上是增函数还是减函数?还是减函数?例例2 证明:函数证明:函数f(x)3x2在在R上是增函数上是增函数例例3 证明:函数证明:函数f(x)在在(0,)上是上是减函数减函数变式变式1:f(x)在在(,0)上是增函数上是增函数还是减函数?还是减函数?例例3 证明:函数证明:函数f(x)在在(0,)上是上是减函数减函数变式变式1:f(x)在在(,0)上是增函数上是增函数还是减函数?还是减函数?变式变式2:讨论函数讨论函数f(x)在在定义域定义域上的上的单调性单调性例例3 证明:函数证明:函数f(x)在在(0,)上是上是减函数减函数变式变式1:f(x)在在(,0)上是增函数上是增函数还是减函数?还是减函数?变式变式2:讨论函数讨论函数f(x)在在定义域定义域上的上的单调性单调性结论:结论:函数函数f(x)在其在其定义域定义域上不具有上不具有单调性单调性例例3 证明:函数证明:函数f(x)在在(0,)上是上是减函数减函数1两个定义:增函数、减函数两个定义:增函数、减函数 课堂小结课堂小结1两个定义:增函数、减函数两个定义:增函数、减函数 2两种方法:两种方法:判断函数单调性的方法判断函数单调性的方法有图象法、定义法有图象法、定义法课堂小结课堂小结

    注意事项

    本文(函数的基本性质-单调性.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开