无穷级数的定义,性质和及敛散性判别.ppt
第十一章第十一章 无穷级数无穷级数 从从18世纪以来,无穷级数就被认为是微积分的世纪以来,无穷级数就被认为是微积分的一个不可缺少的部分,是高等数学的重要内容,同一个不可缺少的部分,是高等数学的重要内容,同时也是有力的数学工具,在表示函数、研究函数性时也是有力的数学工具,在表示函数、研究函数性质等方面有巨大作用,在自然科学和工程技术领域质等方面有巨大作用,在自然科学和工程技术领域有着广泛的应用有着广泛的应用 本章主要内容包括常数项级数和两类重要的函本章主要内容包括常数项级数和两类重要的函数项级数数项级数幂级数和三角级数,主要围绕三个问幂级数和三角级数,主要围绕三个问题展开讨论:题展开讨论:级数的收敛性判定问题,级数的收敛性判定问题,把已知把已知函数表示成级数问题,函数表示成级数问题,级数求和问题。级数求和问题。重点重点级数的敛散性,常数项级数审敛法,幂级数的收敛级数的敛散性,常数项级数审敛法,幂级数的收敛域,函数的幂级数展开式,函数的域,函数的幂级数展开式,函数的Fourier 展开式;展开式;难点难点常数项级数审敛法,函数展开成幂级数的直接法常数项级数审敛法,函数展开成幂级数的直接法和间接法,和间接法,Fourier 展开,级数求和;展开,级数求和;基本要求基本要求掌握级数敛散性概念和性质掌握级数敛散性概念和性质掌握正项级数的比较审敛法、检比法、检根法掌握正项级数的比较审敛法、检比法、检根法掌握交错级数的掌握交错级数的Leibniz审敛法审敛法掌握绝对收敛和条件收敛概念掌握绝对收敛和条件收敛概念掌握幂级数及主要性质,会求收敛半径和收敛掌握幂级数及主要性质,会求收敛半径和收敛区间,会求简单的幂级数的和函数区间,会求简单的幂级数的和函数熟记五个基本初等函数的熟记五个基本初等函数的 Taylor 级数展开式及其级数展开式及其收敛半径收敛半径掌握掌握 Fourier 级数概念,会熟练地求出各种形级数概念,会熟练地求出各种形式的式的Fourier 系数系数掌握奇、偶函数的掌握奇、偶函数的 Fourier 级数的特点及如何级数的特点及如何将函数展开成正弦级数或余弦级数将函数展开成正弦级数或余弦级数一、问题的提出一、问题的提出1.1.计算圆的面积计算圆的面积正六边形的面积正六边形的面积正十二边形的面积正十二边形的面积正正 形的面积形的面积二、级数的概念二、级数的概念1.1.级数的定义级数的定义:一般项一般项(常数项常数项)无穷级数无穷级数级数的部分和级数的部分和部分和数列部分和数列2.2.级数的收敛与发散级数的收敛与发散:余项余项无穷级数收敛性举例:无穷级数收敛性举例:KochKoch雪花雪花.做法:先给定一个正三角形,然后在每条边上对做法:先给定一个正三角形,然后在每条边上对称的产生边长为原边长的称的产生边长为原边长的1/31/3的小正三角形如此的小正三角形如此类推在每条凸边上都做类似的操作,我们就得到类推在每条凸边上都做类似的操作,我们就得到了面积有限而周长无限的图形了面积有限而周长无限的图形“Koch“Koch雪花雪花”观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:依次类推依次类推第第 次分叉:次分叉:周长为周长为面积为面积为于是有于是有雪花的面积存在极限(收敛)雪花的面积存在极限(收敛)结论:雪花的周长是无界的,而面积有界结论:雪花的周长是无界的,而面积有界解解 收敛收敛 发散发散 发散发散 发散发散 综上综上解解三、基本性质三、基本性质结论结论:级数的每一项同乘一个不为零的常数级数的每一项同乘一个不为零的常数,敛散性不变敛散性不变.结论结论:收敛级数可以逐项相加与逐项相减收敛级数可以逐项相加与逐项相减.证明证明 类似地可以证明在级数前面加上有限项不类似地可以证明在级数前面加上有限项不影响级数的敛散性影响级数的敛散性.证明证明注意注意收敛级数去括弧后所成的级数不一定收敛收敛级数去括弧后所成的级数不一定收敛.收敛收敛 发散发散事实上,对级数事实上,对级数任意加括号任意加括号若记若记则则加括号后级数成为加括号后级数成为记记的的部分和为部分和为的的部分和记为部分和记为则则由由数列和子数列的关系知数列和子数列的关系知存在,存在,必定存在必定存在存在存在未必存在未必存在四、收敛的必要条件四、收敛的必要条件级数收敛的必要条件级数收敛的必要条件:证明证明注意注意1.1.如果级数的一般项不趋于零如果级数的一般项不趋于零,则级数发散则级数发散;发散发散2.2.必要条件不充分必要条件不充分.讨论讨论2项项2项项4项项8项项 项项由性质由性质4 4推论推论,调和级数发散调和级数发散.由定积分的几何意义由定积分的几何意义这块面积显然大于定积分这块面积显然大于定积分以以 1 为底的的矩形面积为底的的矩形面积把每一项看成是以把每一项看成是以 为高为高就是图中就是图中 n 个矩形的面积之和个矩形的面积之和即即故调和级数发散故调和级数发散调和级数的部分和调和级数的部分和五、小结五、小结常数项级数的基本概念常数项级数的基本概念基本审敛法基本审敛法思考题思考题思考题解答思考题解答能能由柯西审敛原理即知由柯西审敛原理即知观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:依次类推依次类推12345练习题练习题练习题答案练习题答案