欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    CH.9 因子分析.ppt

    • 资源ID:67201324       资源大小:1.25MB        全文页数:87页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    CH.9 因子分析.ppt

    第九章因子分析第九章因子分析FactorAnalysis1 1 1 引言引言 因子分析(factor analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。2 但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。3注:注:因子分析与回归分析不同,因子分析中的因因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明子是一个比较抽象的概念,而回归因子有非常明确的实际意义;确的实际意义;主成分分析分析与因子分析也有不同,主成主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因分分析仅仅是变量变换,而因子分析需要构造因子模型。子模型。主成分分析主成分分析:原始变量的线性组合表示新的原始变量的线性组合表示新的综合变量,即主成分;综合变量,即主成分;因子分析:潜在的假想变量和随机影响变因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。量的线性组合表示原始变量。42因子分析模型因子分析模型一、数学模型一、数学模型一、数学模型一、数学模型 设 个变量,如果表示为5 称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:即不相关;即 互不相关,方差为1。6即互不相关,方差不一定相等,。7用矩阵的表达方式8二、因子分析模型的性质 1、原始变量X的协方差矩阵的分解 D的主对角线上的元素值越小,则公共因子共享的成分越多。92、模型不受计量单位的影响将原始变量X做变换X*=CX,这里Cdiag(c1,c2,cn),ci0。10113、因子载荷不是惟一的设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为且满足条件因子模型的条件12 三、三、因子载荷矩阵中的几个统计特征因子载荷矩阵中的几个统计特征 1 1、因子载荷、因子载荷a aijij的统计意义的统计意义 因子载荷 是第i个变量与第j个公共因子的相关系数模型为 在上式的左右两边乘以,再求数学期望 根据公共因子的模型性质,有 (载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,相关的密切程度越高。13 2 2、变量共同度的统计意义、变量共同度的统计意义定定义义:变量 的共同度是因子载荷矩阵的第i行的元素的平方和。记为统计意义统计意义:两边求方差 所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。14 3 3、公共因子、公共因子 方差贡献的统计意义方差贡献的统计意义因子载荷矩阵中各列元素的平方和 称为所有的 对 的方差贡献和。衡量的相对重要性。15 3 3 因子载荷矩阵的估计方法因子载荷矩阵的估计方法设随机向量设随机向量的均值为的均值为 ,协方差,协方差为为 ,为为 的特征根,的特征根,为对应为对应的的标准化特征向量,则标准化特征向量,则(一)主成分分析法(一)主成分分析法16上式上式给出的给出的 表达式是精确的,然而,它实际上是毫表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的解释,故略去后面的p-mp-m项的贡献,有项的贡献,有17上式有一个假定,模型中的特殊因子是不重要的,因而从 的分解中忽略了特殊因子的方差。18注:残差矩阵其中S为样本的协方差矩阵。19 (二)主因子法(二)主因子法主因子方法是对主成分方法的修正,假定我们首先对变量进行标准化变换。则R=AA+DR*=AA=R-D称R*为约为约相关矩阵,相关矩阵,R*对角线上的元素是对角线上的元素是,而不是1。20直接求R*的前p个特征根和对应的正交特征向量。得如下的矩阵:21 当特殊因子当特殊因子 的方差不为且的方差不为且已知的,问题非常好解决。2223 在实际的应用中,个性方差矩阵一般都是未知的,在实际的应用中,个性方差矩阵一般都是未知的,可以通过一组样本来估计。可以通过一组样本来估计。估估估估计计计计的的的的方法有如下几种方法有如下几种方法有如下几种方法有如下几种:首先,求 的初始估计值,构造出1)取 ,在这个情况下主因子解与主成分解等价;2)取 ,为xi与其他所有的原始变量xj的复相关系数的平方,即xi对其余的p-1个xj的回归方程的判定系数,这是因为xi 与公共因子的关系是通过其余的p-1个xj 的线性组合联系起来的;24 2)取 ,这意味着取xi与其余的xj的简单相关系数的绝对值最大者;4)取 ,其中要求该值为正数。5)取 ,其中 是 的对角元素。25例例假定某地固定资产投资率假定某地固定资产投资率,通货膨胀率通货膨胀率,失业率失业率,相关系数矩阵为,相关系数矩阵为试用主成分分析法求因子分析模型。试用主成分分析法求因子分析模型。28特征根为特征根为:29可取前两个因子可取前两个因子F1F1和和F F2 2为公共因子,第一公因子为公共因子,第一公因子F F1 1物价就业因子,对物价就业因子,对X X的贡献为的贡献为1.551.55。第一公因子。第一公因子F F2 2为为投资因子,对投资因子,对X X的贡献为的贡献为0.850.85。共同度分别为。共同度分别为1 1,0.7060.706,0.7060.706。30假定某地固定资产投资率假定某地固定资产投资率,通货膨胀率通货膨胀率,失业率失业率,相关系数矩阵为相关系数矩阵为试用主因子分析法求因子分析模型。假定用试用主因子分析法求因子分析模型。假定用代替初始的代替初始的。31特征根为:对应的非零特征向量为:32334因子旋转(正交变换)建建立立了了因因子子分分析析数数学学目目的的不不仅仅仅仅要要找找出出公公共共因因子子以以及及对对变变量量进进行行分分组组,更更重重要要的的要要知知道道每每个个公公共共因因子子的的意意义义,以以便便进进行行进进一一步步的的分分析析,如如果果每每个个公公共共因因子子的的含含义义不不清清,则则不不便便于于进进行行实实际际背背景景的的解解释释。由由于于因因子子载载荷荷阵阵是是不不惟惟一一的的,所所以以应应该该对对因因子子载载荷荷阵阵进进行行旋旋转转。目目的的是是使使因因子子载载荷荷阵阵的的结结构构简简化化,使使载载荷荷矩矩阵阵每每列列或或行行的的元元素素平平方方值值向向0 0和和1 1两两极极分分化化。有有三三种种主主要要的的正正交交旋转法。四次方最大法、旋转法。四次方最大法、方差最大法方差最大法和等量最大法。和等量最大法。(一)为什么要旋转因子(一)为什么要旋转因子34 百米跑成绩 跳远成绩 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩奥运会十项全能运动项目奥运会十项全能运动项目得分数据的因子分析得分数据的因子分析3536 因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表3738 通过旋转,因子有了较为明确的含义。百米跑,跳远和 400米跑,需要爆发力的项目在 有较大的载荷,可以称为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。39变换后因子的共同度变换后因子的共同度设设 正交矩阵,做正交变换正交矩阵,做正交变换正交矩阵,做正交变换正交矩阵,做正交变换变换后因子的共同度没有发生变化!变换后因子的共同度没有发生变化!(二)旋转方法二)旋转方法40变换后因子贡献变换后因子贡献设 正交矩阵,做正交变换正交矩阵,做正交变换变换后因子的贡献发生了变化变换后因子的贡献发生了变化!41 1、方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。上又较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。424344455因子得分因子得分(一)因子得分的概念(一)因子得分的概念(一)因子得分的概念(一)因子得分的概念 前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子进行测度,即给出公共因子的值。49 人人均均要要素素变变量量因因子子分分析析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人)Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 -0.21522 -0.27397 0.89092 X2 0.63973 -0.28739 -0.28755 X3 -0.15791 0.06334 0.94855 X4 0.95898 -0.01501 -0.07556 X5 0.97224 -0.06778 -0.17535 X6 -0.11416 0.98328 -0.08300 X7 -0.11041 0.97851 -0.0724650高载荷指标因子命名因子1X2;面积(万平方公里)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)自然资源因子因子2X6:万人拥有的大学生数(人)X7:万人拥有的科学家、工程师数(人)人力资源因子因子3X1;人口(万人)X3:GDP(亿元)经济发展总量因子 X1=-0.21522F1-0.27397F2+0.89092F3 X2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F351 Standardized Scoring Coefficients Standardized Scoring Coefficients FACTOR1FACTOR1 FACTOR2 FACTOR2 FACTOR3FACTOR3 X1 X1 0.057640.05764 -0.06098-0.06098 0.503910.50391 X2 X2 0.227240.22724 -0.09901-0.09901 -0.07713-0.07713 X3 X3 0.146350.14635 0.129570.12957 0.597150.59715 X4 X4 0.479200.47920 0.112280.11228 0.170620.17062 X5 X5 0.455830.45583 0.074190.07419 0.101290.10129 X6 X6 0.054160.05416 0.486290.48629 0.040990.04099 X7 X7 0.057900.05790 0.485620.48562 0.048220.04822F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X752REGION FACTOR1FACTOR2FACTOR3beijing-0.081694.23473-0.37983tianjin-0.474221.31789-0.87891hebei-0.22192-0.358020.86263shanxi1-0.48214-0.32643-0.54219neimeng0.54446-0.66668-0.92621liaoning-0.205110.463770.34087jilin-0.214990.10608-0.57431heilongj 0.10839-0.11717-0.02219shanghai-0.200692.38962-0.04259前三个因子得分53 因子分析的数学模型为:原变量被表示为公共因子的线性组合,当载荷矩阵旋转之后,公共因子可以做出解释,通常的情况下,我们还想反过来把公共因子表示为原变量的线性组合。因子得分函数:可见,要求得每个因子的得分,必须求得分函数的系数,而由于pm,所以不能得到精确的得分,只能通过估计。541、巴特莱特因子得分巴特莱特因子得分(加权最小二乘法)加权最小二乘法)把把 看作因变量;把因子载荷矩阵看作因变量;把因子载荷矩阵 看成自变量的观测;把某个个案的得分看成自变量的观测;把某个个案的得分 看着最小二乘看着最小二乘法需要求的系数法需要求的系数。1)巴特莱特因子得分计算方法的思想55由于特殊因子的方差相异,所以用加权最小二乘法求得分,每个各案作一次,要求出所有样品的得分,需要作n次。56用矩阵表达:满足上式的F是相应个案的因子得分。57582)得分估计的无偏性n n如果将f和 不相关的假定加强为相互独立,则593)602、回归方法1)思想61 则,我们有如下的方程组:62j=1,2,m63注:共需要解注:共需要解m次才能解次才能解出出所有的得分函数的系数。所有的得分函数的系数。64矩阵表示方法在因子模型中,假设服从(m+p)元的正态分布,有6566672)估计的有偏性3)平均预报误差68国民生活质量的因素分析 国国家家发发展展的的最最终终目目标标,是是为为了了全全面面提提高高全全体体国国民民的的生生活活质质量量,满满足足广广大大国国民民日日益益增增长长的的物物质质和和文文化化的的合合理理需需求求。在在可可持持续续发发展展消消费费的的统统一一理理念念下下,增增加加社社会会财财富富,创创自自更更多多的的物物质质文文明明和和精精神神文文明明,保保持持人人类类的的健健康康延延续续和和生生生生不不息息,在在人人类类与与自自然然协协同同进进化化的的基基础础上上,维维系系人人类类与与自自然然的的平平衡衡,达达到到完完整整的的代代际际公公平平和和区区际际公公平平(即即时时间间过过程程的的最最大大合合理理性性与与空空间分布的最大合理化间分布的最大合理化)。从从19901990年年开开始始,联联合合国国开开发发计计划划署署(UYNP)UYNP)首首次次采采用用“人人文文发发展展系系数数”指指标标对对于于国国民民生生活活质质量量进进行行测测度度。人人文文发发展展系系数数利利用用三三类类内内涵涵丰丰富富的的指指标标组组合合,即即人人的的健健康康状状况况(使使用用出出生生时时的的人人均均预预期期寿寿命命表表达达)、人人的的智智力力程程度度(使使用用组组合合的的教教育育成成就就表表达达)、人人的的福福利利水水平平(使使用用人人均均国国民民收收入入或或人人均均GDPGDP表表达达),并并且且特特别别强强调调三三类类指指标标组组合合的的整整体体表表达达内内涵涵,去去衡衡量量一一个个国国家或地区的社会发展总体状况以及国民生活质量的总水平。家或地区的社会发展总体状况以及国民生活质量的总水平。69在这个指标体系中有如下的指标:在这个指标体系中有如下的指标:X X1 1预期寿命预期寿命X X2 2成人识字率成人识字率X X3 3综合入学率综合入学率X X4 4人均人均GDPGDP(美圆)美圆)X X5 5预期寿命指数预期寿命指数X X6 6教育成就指数教育成就指数X X7 7人均人均GDPGDP指数指数70旋转后的因子结构旋转后的因子结构RotatedFactorPatternRotatedFactorPatternFACTOR1FACTOR2FACTOR3FACTOR1FACTOR2FACTOR3X10.381290.41765X10.381290.417650.817140.81714X20.12166X20.121660.848280.848280.459810.45981X30.64803X30.648030.618220.618220.223980.22398X4X40.904100.904100.205310.341000.205310.34100X50.388540.43295X50.388540.432950.808480.80848X60.28207X60.282070.853250.853250.432890.43289X7X70.900910.900910.206120.350520.206120.35052FACTOR1FACTOR1为经济发展因子为经济发展因子 FACTOR2FACTOR2为为教育成就因子教育成就因子FACTOR3FACTOR3为为健康水平因子健康水平因子71被每个因子解释的方差和共同度被每个因子解释的方差和共同度VarianceexplainedbyeachfactorVarianceexplainedbyeachfactorFACTOR1FACTOR2FACTOR3FACTOR1FACTOR2FACTOR32.4397002.2763172.0094902.4397002.2763172.009490FinalCommunalityEstimates:Total=FinalCommunalityEstimates:Total=6.7255076.725507X1X2X3X4X1X2X3X4X5X50.9875300.9457960.8523060.9758300.9875300.9457960.8523060.9758300.9920500.992050X6 X7X6 X7 0.994995 0.976999 0.994995 0.976999 72StandardizedScoringCoefficientsStandardizedScoringCoefficients标准化得分系数标准化得分系数FACTOR1FACTOR2FACTOR3FACTOR1FACTOR2FACTOR3X1-0.18875-0.343970.85077X1-0.18875-0.343970.85077X2-0.241090.60335-0.10234X2-0.241090.60335-0.10234X30.354620.50232-0.59895X30.354620.50232-0.59895X40.53990-0.17336-0.10355X40.53990-0.17336-0.10355X5-0.17918-0.316040.81490X5-0.17918-0.316040.81490X6-0.092300.62258-0.24876X6-0.092300.62258-0.2487673生育率的影响因素分析生育率受社会、经济、文化、计划生育政策等很多生育率受社会、经济、文化、计划生育政策等很多因素影响,但这些因素对生育率的影响并不是完全独立因素影响,但这些因素对生育率的影响并不是完全独立的,而是交织在一起,如果直接用选定的变量对生育率的,而是交织在一起,如果直接用选定的变量对生育率进行多元回归分析,最终结果往往只能保留两三个变量,进行多元回归分析,最终结果往往只能保留两三个变量,其他变量的信息就损失了。因此,考虑用因子分析的方其他变量的信息就损失了。因此,考虑用因子分析的方法,找出变量间的数据结构,在信息损失最少的情况下法,找出变量间的数据结构,在信息损失最少的情况下用新生成的因子对生育率进行分析。用新生成的因子对生育率进行分析。选择的变量有:多子率、综合节育率、初中以上文化选择的变量有:多子率、综合节育率、初中以上文化程度比例、城镇人口比例、人均国民收入。下表是程度比例、城镇人口比例、人均国民收入。下表是19901990年中国年中国3030个省、自治区、直辖市的数据。个省、自治区、直辖市的数据。7475EigenvalueDifferenceProportionCumulative3.249175972.034642910.64980.64981.214533060.962968000.24290.89270.251565070.067433970.05030.94310.184131090.083536290.03680.97990.100594800.02011.0000特征根与各因子的贡献特征根与各因子的贡献76Factor1Factor2x1-0.760620.55316x20.56898-0.76662x30.891840.25374x40.870660.34618x50.890760.36962没有旋转的因子结构没有旋转的因子结构77Factor1可解释方差Factor2可解释方差2.99754292.1642615各旋转后的共同度各旋转后的共同度0.884540230.911439980.859770610.877894530.9300636978 在这个例子中我们得到了两个因子,第一个因子是社会经济发展水平因子,第二个是计划生育因子。有了因子得分值后,则可以利用因子得分为变量,进行其他的统计分析。Factor1Factor2x1-0.35310-0.87170 x20.077570.95154x30.891140.25621x40.922040.16655x50.951490.15728Factor1Factor2x1-0.05897-0.49252x2-0.058050.58056x30.330420.03497x40.35108-0.02506x50.36366-0.03493方差最大旋转后的因子结构方差最大旋转后的因子结构标准化得分函数标准化得分函数796因子分析的步骤、展望和建议 计算所选原始变量的相关系数矩阵计算所选原始变量的相关系数矩阵计算所选原始变量的相关系数矩阵计算所选原始变量的相关系数矩阵 相关系数矩阵描述了原始变量之间的相关关系。可以相关系数矩阵描述了原始变量之间的相关关系。可以帮助判断原始变量之间是否存在相关关系,这对因子分析帮助判断原始变量之间是否存在相关关系,这对因子分析是非常重要的,因为如果所选变量之间无关系,做因子分是非常重要的,因为如果所选变量之间无关系,做因子分析是不恰当的。并且相关系数矩阵是估计因子结构的基础。析是不恰当的。并且相关系数矩阵是估计因子结构的基础。选择分析的变量选择分析的变量用定性分析和定量分析的方法选择变量,因子分析的前提条件是观测变量间有较强的相关性,因为如果变量之间无相关性或相关性较小的话,他们不会有共享因子,所以原始变量间应该有较强的相关性。一、因子分析通常包括以下五个步骤80 提取公共因子提取公共因子提取公共因子提取公共因子 这一步要确定因子求解的方法和因子的个数。需要这一步要确定因子求解的方法和因子的个数。需要根据研究者的设计方案或有关的经验或知识事先确根据研究者的设计方案或有关的经验或知识事先确定。因子个数的确定可以根据因子方差的大小。只定。因子个数的确定可以根据因子方差的大小。只取方差大于取方差大于1 1(或特征值大于或特征值大于1)1)的那些因子,因为方的那些因子,因为方差小于差小于1 1的因子其贡献可能很小;按照因子的累计方的因子其贡献可能很小;按照因子的累计方差贡献率来确定,一般认为要达到差贡献率来确定,一般认为要达到6060才能符合要才能符合要求;求;因子旋转因子旋转因子旋转因子旋转 通过坐标变换使每个原始变量在尽可能少的因子之通过坐标变换使每个原始变量在尽可能少的因子之间有密切的关系,这样因子解的实际意义更容易解间有密切的关系,这样因子解的实际意义更容易解释释,并为每个潜在因子赋予有实际意义的名字。并为每个潜在因子赋予有实际意义的名字。81计算因子得分计算因子得分 求出各样本的因子得分,有了因子得分值,则可以在许多分析中使用这些因子,例如以因子的得分做聚类分析的变量,做回归分析中的回归因子。82因子分析是十分主观的,在许多出版的资料中,因子分析模型都用少数可阐述因子提供了合理解释。实际上,绝大多数因子分析并没有产生如此明确的结果。不幸的是,评价因子分析质量的法则尚未很好量化,质量问题只好依赖一个“哇!”准则 如果在仔细检查因子分析的时候,研究人员能够喊出“哇,我明白这些因子”的时候,就可看着是成功运用了因子分析方法。83补充:变量聚类分析补充:变量聚类分析一、简介一、简介在实际工作中,变量聚类的应用也十分重要。在系统分析或评估过程中,为了避免某些重要因素的遗漏,人们往往在一开始选取指标时,尽可能多地考虑所有的相关因素。而这样做的结果,则是变量过多,变量相关度高,给系统分析与建模带来很大的不便。因此,人们常常希望能研究变量间的相似关系,按照变量的相关关系把他们聚合为若干类,从而观察和解释影响系统的主要原因。84SAS/VARCLUS过程试图把一组变量分为不重叠的一些类,所以VARCLUS过程可以用来压缩变量,用信息损失很少的类分量来代替含有很多变量的变量集。例如,一种教育情况的检查可能包括有50项指标,VARCLUS分析将这些项分为几类,比如5个类,每类做部分检查,检查类分量的得分。85二、二、变量聚类的步骤变量聚类的步骤VARCLUS过程开始把所有变量看为一个类,然后重复下面的步骤:1、首先挑选一个将被分裂的类首先挑选一个将被分裂的类VARCLUS过程首先找出该大类的第一和第二公共因子,这两个公共因子经过正交坐标变换,即因子分析中常用的Quartimax(四次方最大方法,按行简化因子载荷矩阵每行的结构)旋转,让原始变量仅仅在一个公共因子上有高载荷。变量被指定归入一个与其相关系数的平方较高的公共因子。如此原有的大类被分裂为二。862、变量重新归类、变量重新归类两个(或两个以上的)之中的一个类被选中,照第一步的方法再分裂为二。这个被选中的类通常拥有最大的第二特征根,或者是拥有最小的可被类向量解释的变异数百分比。3、第一步和第二步不停的交互进行、第一步和第二步不停的交互进行,直至类内变量之间的第二特征根或可被类向量解释的变异数百分比达到预设定的标准为止。87

    注意事项

    本文(CH.9 因子分析.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开