3.4受压构件的截面承载力.ppt
引 言3.4 3.4 受压构件的截面承载力受压构件的截面承载力 由由M与与N引起的破坏引起的破坏 由由M、N与与V引起的破坏引起的破坏 N=0,M0N0,M=0 N0,M0 引 言主要内容主要内容l受压构件一般构造受压构件一般构造l轴心受压构件正截面受压承载力轴心受压构件正截面受压承载力l偏心受压构件正截面受压破坏形态偏心受压构件正截面受压破坏形态l偏心受压长柱的二阶弯矩偏心受压长柱的二阶弯矩l矩形截面正截面受压承载力的一般计算公式矩形截面正截面受压承载力的一般计算公式l不对称配筋矩形截面正截面承载力计算不对称配筋矩形截面正截面承载力计算l对称配筋矩形截面正截面承载力计算对称配筋矩形截面正截面承载力计算l正截面承载力正截面承载力Nu-Mu相关曲线及其应用相关曲线及其应用主要内容3.4.1 受压构件一般构造受压构件一般构造截面形式与尺寸截面形式与尺寸 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。采用矩形截面,单层工业厂房的预制柱常采用工字形截面。圆形截面主要用于桥墩、桩和公共建筑中的柱。圆形截面主要用于桥墩、桩和公共建筑中的柱。柱的截面尺寸不宜过小,一般应控制在柱的截面尺寸不宜过小,一般应控制在l0/b30及及l0/h25。当柱截面的边长在当柱截面的边长在800mm以下时,一般以以下时,一般以50mm为模数,边长为模数,边长在在800mm以上时,以以上时,以100mm为模数。为模数。材料的选择材料的选择混凝土:混凝土:受压构件的承载力主要取决于混凝土强度,一般应采用受压构件的承载力主要取决于混凝土强度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱的混凝土强度等级强度等级较高的混凝土。目前我国一般结构中柱的混凝土强度等级常用常用C25C40,在高层建筑中,在高层建筑中,C50C60级混凝土也经常使用。级混凝土也经常使用。钢钢 筋筋:纵筋通常采用纵筋通常采用HRB335级、级、HRB400级和级和RRB400级钢筋,级钢筋,不宜过高。箍筋通常采用不宜过高。箍筋通常采用HRB335级和级和 HRB400级,也可采用级,也可采用RRB400级钢筋。级钢筋。截面与材料纵向钢筋纵向钢筋 为提高受压构件的延性,减少混凝土收缩和温度变化产生的为提高受压构件的延性,减少混凝土收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。拉应力,规定了受压钢筋的最小配筋率。规范规范规定,轴心受压构件、偏心受压构件全部纵向钢筋规定,轴心受压构件、偏心受压构件全部纵向钢筋的配筋率不应小于的配筋率不应小于0.6%;当混凝土强度等级大于当混凝土强度等级大于C50时不应时不应小于小于0.7%;一侧受压钢筋的配筋率不应小于一侧受压钢筋的配筋率不应小于0.2%,受拉钢,受拉钢筋最小配筋率的要求同受弯构件。筋最小配筋率的要求同受弯构件。另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质量,另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质量,全部纵筋配筋率不宜超过全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率按全部纵向钢筋的配筋率按r r=(As+As)/A计算,一侧受压钢筋计算,一侧受压钢筋的配筋率按的配筋率按r r=As/A计算,其中计算,其中A为构件全截面面积。为构件全截面面积。纵 筋纵向钢筋纵向钢筋 柱中纵向受力钢筋的的直径柱中纵向受力钢筋的的直径d不宜小于不宜小于12mm,且选配钢筋时,且选配钢筋时宜根数少而粗,但对矩形截面根数不得少于宜根数少而粗,但对矩形截面根数不得少于4根,圆形截面根根,圆形截面根数不宜少于数不宜少于8根,且应沿周边均匀布置。根,且应沿周边均匀布置。当柱为竖向浇筑混凝土时,纵筋的净距不应小于当柱为竖向浇筑混凝土时,纵筋的净距不应小于50mm。对水平浇筑的预制柱,其纵向钢筋的最小净距应按梁的规定对水平浇筑的预制柱,其纵向钢筋的最小净距应按梁的规定取值。取值。截面各边纵筋的中距不应大于截面各边纵筋的中距不应大于300mm。当。当h600mm时,在柱时,在柱侧面应设置直径侧面应设置直径1016mm的纵向构造钢筋,并相应设置附加的纵向构造钢筋,并相应设置附加箍筋或拉筋。箍筋或拉筋。纵 筋柱的钢筋接头柱的钢筋接头 纵向钢筋的搭接位置一般在楼面大梁顶面,钢筋搭纵向钢筋的搭接位置一般在楼面大梁顶面,钢筋搭接长度为接长度为l1。偏心受压柱的纵向构造钢筋与复合箍筋偏心受压柱的纵向构造钢筋与复合箍筋纵 筋箍箍 筋筋 受受压压构构件件中中箍箍筋筋应应采采用用封封闭闭式式,其其直直径径不不应应小小于于d/4,且且不不小小于于6mm,此处,此处d为纵筋的最大直径。为纵筋的最大直径。箍箍筋筋间间距距对对绑绑扎扎钢钢筋筋骨骨架架,箍箍筋筋间间距距不不应应大大于于15d;对对焊焊接接钢钢筋筋骨骨架架不不应应大大于于20d(d为为纵纵筋筋的的最最小小直直径径)且且不不应应大大于于400mm,也不应大于截面短边尺寸,也不应大于截面短边尺寸 当当柱柱中中全全部部纵纵筋筋的的配配筋筋率率超超过过3%,箍箍筋筋直直径径不不宜宜小小于于8mm,且且箍箍筋筋末末端端应应作作成成135的的弯弯钩钩,弯弯钩钩末末端端平平直直段段长长度度不不应应小小于于10倍倍箍箍筋筋直直径径,或或焊焊成成封封闭闭式式;箍箍筋筋间间距距不不应应大大于于10倍倍纵筋最小直径,也不应大于纵筋最小直径,也不应大于200mm。当当柱柱截截面面短短边边大大于于400mm,且且各各边边纵纵筋筋配配置置根根数数超超过过3根根时时,或或当当柱柱截截面面短短边边不不大大于于400mm,但但各各边边纵纵筋筋配配置置根根数数超超过过4根时,应设置复合箍筋。根时,应设置复合箍筋。对对截截面面形形状状复复杂杂的的柱柱,不不得得采采用用具具有有内内折折角角的的箍箍筋筋,以以避避免免箍筋受拉时产生向外的拉力,使折角处混凝土破损。箍筋受拉时产生向外的拉力,使折角处混凝土破损。箍 筋复杂截面的箍筋形式复杂截面的箍筋形式箍 筋3.4.2 轴心受压构件正截面受压承载力轴心受压构件正截面受压承载力 在实际结构中,理想的轴心受压构件几乎是不存在的。在实际结构中,理想的轴心受压构件几乎是不存在的。通常由于施工制造的误差、荷载作用位置的偏差、混凝土的不通常由于施工制造的误差、荷载作用位置的偏差、混凝土的不均匀性等原因,往往存在一定的初始偏心距。均匀性等原因,往往存在一定的初始偏心距。但有些构件,如以恒载为主的等跨多层房屋的内柱、桁架中的但有些构件,如以恒载为主的等跨多层房屋的内柱、桁架中的受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。普通箍筋柱普通箍筋柱:纵筋纵筋的作用的作用?箍筋箍筋的作用的作用?螺旋箍筋柱螺旋箍筋柱:箍筋的形状:箍筋的形状为圆形,且间距较密,其为圆形,且间距较密,其作用作用?概 述概 述概 述纵筋的作用:纵筋的作用:协助混凝土受压协助混凝土受压受压钢筋最小配筋率:受压钢筋最小配筋率:0.6%(单侧单侧0.2%)承担弯矩作用承担弯矩作用 减小持续压应力下混凝土收缩和徐变的影响。减小持续压应力下混凝土收缩和徐变的影响。试验表明,收缩和徐变能把柱截面中的压力由混凝土向试验表明,收缩和徐变能把柱截面中的压力由混凝土向钢筋转移,从而使钢筋压应力不断增长。压应力的增长钢筋转移,从而使钢筋压应力不断增长。压应力的增长幅度随配筋率的减小而增大。如果不给配筋率规定一个幅度随配筋率的减小而增大。如果不给配筋率规定一个下限,钢筋中的压应力就可能在持续使用荷载下增长到下限,钢筋中的压应力就可能在持续使用荷载下增长到屈服应力水准。屈服应力水准。概 述 箍筋的作用:箍筋的作用:与纵筋形成骨架,便于施工;与纵筋形成骨架,便于施工;防止纵筋的压屈;防止纵筋的压屈;对核心混凝土形成约束,提高混凝土的抗压对核心混凝土形成约束,提高混凝土的抗压强度,增加构件的延性。强度,增加构件的延性。普普 通通 箍箍 筋筋 柱柱一、轴心受压普通箍筋柱的正截面受压承载力计算一、轴心受压普通箍筋柱的正截面受压承载力计算1.破坏形态及受力分析破坏形态及受力分析截面应变大体上均匀分布,随着外荷增大,纵筋先达到屈服,截面应变大体上均匀分布,随着外荷增大,纵筋先达到屈服,随着荷载增加,最后混凝土达到最大应力值。随着荷载增加,最后混凝土达到最大应力值。为什么?为什么?短柱普普 通通 箍箍 筋筋 柱柱一、轴心受压普通箍筋柱的正截面受压承载力计算一、轴心受压普通箍筋柱的正截面受压承载力计算1.破坏形态及受力分析破坏形态及受力分析截面应变大体上均匀分布,随着外荷增大,纵筋先达到屈服,截面应变大体上均匀分布,随着外荷增大,纵筋先达到屈服,随着荷载增加,最后混凝土达到最大应力值。随着荷载增加,最后混凝土达到最大应力值。设计时,偏安全取设计时,偏安全取c=0.002,混凝土达到混凝土达到fc,此时钢筋的应力为:,此时钢筋的应力为:短柱故不宜采用高强钢筋故不宜采用高强钢筋普普 通通 箍箍 筋筋 柱柱一、轴心受压普通箍筋柱的正截面受压承载力计算一、轴心受压普通箍筋柱的正截面受压承载力计算1.破坏形态及受力分析破坏形态及受力分析长柱在轴力和弯矩的共同作用下发在轴力和弯矩的共同作用下发生破坏,首先在构件凹侧出现生破坏,首先在构件凹侧出现纵向裂缝,随后混凝土被压碎,纵向裂缝,随后混凝土被压碎,纵筋被压曲外凸,凸侧混凝土纵筋被压曲外凸,凸侧混凝土出现横向裂缝,侧向挠度急剧出现横向裂缝,侧向挠度急剧增大,柱子被破坏。增大,柱子被破坏。初始偏心距初始偏心距由初始偏心距引起的附加弯矩由初始偏心距引起的附加弯矩2.承载力计算承载力计算轴心受压轴心受压短短柱柱轴心受压轴心受压长长柱柱稳定系数稳定系数稳定系数稳定系数 主要与柱的长细主要与柱的长细比比l0/i有关有关普普 通通 箍箍 筋筋 柱柱构件的计算长度构件的计算长度 l0 与构件两端的支承情况有关与构件两端的支承情况有关:轴心受压和偏心受压柱的计算长度轴心受压和偏心受压柱的计算长度l0 0可按下列规定取用可按下列规定取用:(1)(1)刚性屋盖单层房屋排架柱、露天吊车柱和栈桥柱:刚性屋盖单层房屋排架柱、露天吊车柱和栈桥柱:(2)(2)对一般多层房屋的框架柱对一般多层房屋的框架柱,梁柱为刚接的框架各层柱段:梁柱为刚接的框架各层柱段:现浇楼盖现浇楼盖 底层柱段底层柱段 其余各层柱段其余各层柱段装配式楼盖装配式楼盖 底层柱段底层柱段 其余各层柱段其余各层柱段H对底层柱为从基础顶面到一层楼盖顶面的高度对底层柱为从基础顶面到一层楼盖顶面的高度,对其余各对其余各层柱为上下两层楼盖顶面之间的高度。层柱为上下两层楼盖顶面之间的高度。3.公式的应用公式的应用普普 通通 箍箍 筋筋 柱柱(1)根据构造要求及经验,确定定截面尺寸()根据构造要求及经验,确定定截面尺寸(b,h)求:求:步骤:步骤:已知:已知:(2)计算)计算 l0,确定,确定(4)选配筋并绘制配筋图。)选配筋并绘制配筋图。(3)计算)计算As3.公式的应用公式的应用普普 通通 箍箍 筋筋 柱柱求:求:步骤:步骤:已知:已知:(2)计算)计算Nu则则则则若若若若(1)确定)确定混凝土圆柱体三向受压状态的纵向抗压强度混凝土圆柱体三向受压状态的纵向抗压强度二、轴心受压螺旋式箍筋柱的正截面受压承载力计算二、轴心受压螺旋式箍筋柱的正截面受压承载力计算螺螺 旋旋 箍箍 筋筋 柱柱 螺螺 旋旋 箍箍 筋筋 柱柱 螺旋箍筋柱与普通箍筋柱力位移曲线的比较螺旋箍筋柱与普通箍筋柱力位移曲线的比较1.1.螺旋式箍筋的选用场合螺旋式箍筋的选用场合 当轴心受压构件承受的轴向荷载设计值较大同时截面当轴心受压构件承受的轴向荷载设计值较大同时截面 尺寸由于各种原因受到限制,可考虑配置螺旋式箍筋。尺寸由于各种原因受到限制,可考虑配置螺旋式箍筋。在地震区,配置螺旋式箍筋能大大提高构件的延性。在地震区,配置螺旋式箍筋能大大提高构件的延性。螺旋式箍筋施工复杂,成本较高,不宜普遍采用。螺旋式箍筋施工复杂,成本较高,不宜普遍采用。2.2.间接钢筋概念间接钢筋概念 对配置螺旋式箍筋的柱,箍筋所包围的核芯混凝土,相对配置螺旋式箍筋的柱,箍筋所包围的核芯混凝土,相当于受到一个套箍作用,有效地限制了核芯混凝土的横向变当于受到一个套箍作用,有效地限制了核芯混凝土的横向变形,使核芯混凝土在三向压应力作用下工作,从而提高承载形,使核芯混凝土在三向压应力作用下工作,从而提高承载力,间接提高了纵向抗压强度力,间接提高了纵向抗压强度.3.3.间接钢筋对提高受压构件受力性能的作用间接钢筋对提高受压构件受力性能的作用试验结果表明,与普通箍筋柱相比,螺旋箍筋柱的承载试验结果表明,与普通箍筋柱相比,螺旋箍筋柱的承载力高,变形能力大。力高,变形能力大。4.4.螺旋式箍筋柱的构造形式螺旋式箍筋柱的构造形式5.5.配螺旋式箍筋轴心受压正截面承载力计算配螺旋式箍筋轴心受压正截面承载力计算:正截面受压承载力图正截面受压承载力图前式的使用注意事项前式的使用注意事项:(1)为保证在使用荷载作用下,箍筋外层混凝土不致于为保证在使用荷载作用下,箍筋外层混凝土不致于 过早剥落,规范规定配螺旋式箍筋不应比按普通箍过早剥落,规范规定配螺旋式箍筋不应比按普通箍筋的轴心受压承载力设计值算得的大筋的轴心受压承载力设计值算得的大50%。(2)当长细比当长细比 l0/d 12时,螺旋式箍筋不能发挥作用,时,螺旋式箍筋不能发挥作用,按普通箍筋柱计算公式计算构件承载力按普通箍筋柱计算公式计算构件承载力(3)按前式算得承载力小于普通箍筋柱计算公式算得按前式算得承载力小于普通箍筋柱计算公式算得 的承载力,采用普通箍筋柱计算公式的承载力,采用普通箍筋柱计算公式(4)当间接钢筋的换算截面面积当间接钢筋的换算截面面积Ass0小于纵向钢筋全部小于纵向钢筋全部 截面面积截面面积As的的25%,采用普通箍筋柱计算公式,采用普通箍筋柱计算公式螺螺 旋旋 箍箍 筋筋 柱柱 规范规范规定:规定:按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的的50%;对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺旋箍筋的约束作用得不到有效发挥。因此,对长细比压,螺旋箍筋的约束作用得不到有效发挥。因此,对长细比l0/d大于大于12的柱不考虑螺旋箍筋的约束作用;的柱不考虑螺旋箍筋的约束作用;螺旋箍筋的约束效果与其截面面积螺旋箍筋的约束效果与其截面面积Ass1和间距和间距S有关,为保证有关,为保证约束效果,螺旋箍筋的换算面积约束效果,螺旋箍筋的换算面积Ass0不得小于不得小于全部纵筋全部纵筋As面积的面积的25%;螺旋箍筋的间距螺旋箍筋的间距S不应大于不应大于dcor/5,且不大于,且不大于80mm,同时为方,同时为方便施工,便施工,S也不应小于也不应小于40mm。思路:思路:螺螺 旋旋 箍箍 筋筋 柱柱 一个公式,需配置两种钢筋,其Ass1=?As=?假定受压筋假定受压筋As由公式计算出由公式计算出Asso假定箍筋直径假定箍筋直径d,去求出去求出S或假定或假定S求箍筋直径求箍筋直径d公式应用【例例1】某现浇多层钢筋混凝土框架结构,底层中柱某现浇多层钢筋混凝土框架结构,底层中柱按轴心受压构件计算,柱高按轴心受压构件计算,柱高H=6.4m,柱截面面积,柱截面面积bh=400mm400mm,承受轴向压力设计值,承受轴向压力设计值N=2450kN,采用,采用C30级混凝土(级混凝土(fc=14.3N/mm2),),HRB335级钢级钢筋(筋(fy=300N/mm2),求纵向钢筋面积,并配置纵向),求纵向钢筋面积,并配置纵向钢筋和箍筋。钢筋和箍筋。【解解】(1)求稳定系数。柱计算长度为求稳定系数。柱计算长度为l0=1.0H=1.06.4m=6.4m且且l0/b=16查表查表3.4.1得得=0.87。(2)计算纵向钢筋面积计算纵向钢筋面积As。由公式。由公式 N0.9 (fcA+fyAs)得:得:As=2803mm2(3)配筋。配筋。选用纵向钢筋选用纵向钢筋822(As=3041mm2)。箍筋为:直径箍筋为:直径dd/4=3.4.5mm d6mm 取取6 间距间距s400mm sb=400mm s15d=330mm取取s=300mm所以,选用箍筋所以,选用箍筋6300。(4)验算验算=1.9%0.5%满足最小配筋率的要求。满足最小配筋率的要求。3%不必用不必用A-As代替代替A。(5)画截面配筋图画截面配筋图(见下图见下图)。)。截面配筋图截面配筋图【例例2】某建筑安全等级为二级的无侧移现浇某建筑安全等级为二级的无侧移现浇多层框架的中间柱多层框架的中间柱如右图所示如右图所示,采用,采用C25级混级混凝土(凝土(fc=11.9N/mm2),),HRB335级纵筋,每级纵筋,每层楼盖传至柱上的荷载设计值为层楼盖传至柱上的荷载设计值为430.6kN,试,试设计第一层柱。设计第一层柱。【解解】(1)初选柱截面尺寸。初选柱截面尺寸。假定各层柱截面尺寸均为假定各层柱截面尺寸均为 350mm350mm。(2 2)计算轴向力设计值。计算轴向力设计值。柱自重标准值为:柱自重标准值为:(2 24.8+7.2+1.3)4.8+7.2+1.3)0.350.350.350.3525=25=53.4.43kN53.4.43kN第一层柱底的轴向力设计值第一层柱底的轴向力设计值N N为为N N=3=3430.6+1.2430.6+1.253.4.43=1358.3kN53.4.43=1358.3kN由表得由表得=1.0。l0=H=1.0(7.2+1.3)=8.5ml0/b=24.28,查表查表P57表表3-8得得=0.64。(3)计算纵筋用量。计算纵筋用量。由式由式N0.9 (fcA+fyAs)得:得:As=3001.4mm2选配选配822(As=3041mm2)。实际配筋率实际配筋率=As/bh=2.48%min=0.5%也小于也小于3%。配筋。配筋见下图所示见下图所示。箍筋选配。箍筋选配6200,与基础钢筋搭接处箍筋选,与基础钢筋搭接处箍筋选6150。例例2附图附图 压弯构件压弯构件 偏心偏心受压构件受压构件偏心距偏心距e0=0时,轴心受压构件时,轴心受压构件当当e0时,即时,即N=0时,受弯构件时,受弯构件偏心受压构件的受力性能和破坏形态界于偏心受压构件的受力性能和破坏形态界于轴心受压轴心受压构件和构件和受弯构件受弯构件。3.4.3 偏心受压构件正截面受压破坏形态一、受拉破坏形态一、受拉破坏形态偏心受压构件的破坏形态与偏心受压构件的破坏形态与偏心距偏心距e0和和纵向钢筋配筋率纵向钢筋配筋率有关有关M较大,较大,N较小较小偏心距偏心距e0较大较大As配筋合适配筋合适受受 拉拉 破破 坏坏 截面受拉侧混凝土较早出现裂缝,截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展的应力随荷载增加发展较快,较快,首先达到屈服强度首先达到屈服强度。此后,裂缝迅速开展,受压区高度减小。此后,裂缝迅速开展,受压区高度减小。最后受压侧钢筋最后受压侧钢筋As 受压屈服,压区混凝土压碎而达到破坏。受压屈服,压区混凝土压碎而达到破坏。这种破坏具有明显预兆,变形能力较大,破坏特征与配有受这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。承载力主要取决于受拉侧钢筋。形成这种破坏的形成这种破坏的条件条件是:偏心距是:偏心距e0较大,且受拉侧纵向钢筋配较大,且受拉侧纵向钢筋配筋率合适,通常称为筋率合适,通常称为大偏心受压大偏心受压。一、受拉破坏形态一、受拉破坏形态偏心受压构件的破坏形态与偏心受压构件的破坏形态与偏心距偏心距e0和和纵向钢筋配筋率纵向钢筋配筋率有关有关受受 拉拉 破破 坏坏 受拉破坏时的截面应力和受拉破坏形态受拉破坏时的截面应力和受拉破坏形态(a)截面应力)截面应力 (b)受拉破坏形态)受拉破坏形态 受受 拉拉 破破 坏坏 产生受压破坏的条件有两种情况:产生受压破坏的条件有两种情况:当相对偏心距当相对偏心距e0/h0较小,截面全部受压或大部分受压较小,截面全部受压或大部分受压或虽然相对偏心距或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时较大,但受拉侧纵向钢筋配置较多时相对偏心距相对偏心距e0/h0 较小较小As太多太多二、受压破坏形态二、受压破坏形态受受 压压 破破 坏坏 产生受压破坏的条件有两种情况:产生受压破坏的条件有两种情况:当相对偏心距当相对偏心距e0/h0较小,截面全部受压或大部分受压较小,截面全部受压或大部分受压或虽然相对偏心距或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时较大,但受拉侧纵向钢筋配置较多时 截面受压侧混凝土和钢筋的受力较大。截面受压侧混凝土和钢筋的受力较大。而受拉侧钢筋应力较小。而受拉侧钢筋应力较小。当相对偏心距当相对偏心距e0/h0很小时,很小时,“受拉侧受拉侧”还可能出现还可能出现“反向破坏反向破坏”情况。情况。截面最后是由于受压区混凝土首先压碎而达到破坏。截面最后是由于受压区混凝土首先压碎而达到破坏。承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高度较大,远侧钢筋可能受拉也可能受压,破坏具有脆性性质。度较大,远侧钢筋可能受拉也可能受压,破坏具有脆性性质。第二种情况在设计应予避免第二种情况在设计应予避免,因此受压破坏一般为偏心距较小,因此受压破坏一般为偏心距较小的情况,故常称为的情况,故常称为小偏心受压小偏心受压。二、受压破坏形态二、受压破坏形态受受 压压 破破 坏坏 受压破坏时的截面应力和受压破坏形态受压破坏时的截面应力和受压破坏形态(a)(b)截面应力截面应力 (c)受压破坏形态受压破坏形态受受 压压 破破 坏坏 受拉破坏和受压破坏的界限受拉破坏和受压破坏的界限 即即受拉钢筋屈服受拉钢筋屈服与与受压区混凝土边缘极限压应变受压区混凝土边缘极限压应变e ecu同时同时达到。达到。与适筋梁和超筋梁的界限情况类似。与适筋梁和超筋梁的界限情况类似。因此,界限破坏时因此,界限破坏时相对界限受压区高度相对界限受压区高度仍为仍为:当当 时,为大偏心受压;时,为大偏心受压;当当 时,为小偏心受压。时,为小偏心受压。界界 限限 破破 坏坏 3.4.4 偏心受压长柱的二阶弯矩偏心受压长柱的二阶弯矩 由于施工误差、荷载作用位置的不确定性及材料的不均由于施工误差、荷载作用位置的不确定性及材料的不均匀等原因,实际工程中不存在理想的轴心受压构件。为考虑匀等原因,实际工程中不存在理想的轴心受压构件。为考虑这些因素的不利影响,引入这些因素的不利影响,引入附加偏心距附加偏心距ea,即在正截面受压即在正截面受压承载力计算中,偏心距取计算偏心距承载力计算中,偏心距取计算偏心距e0=M/N与附加偏心距与附加偏心距ea之和,称为之和,称为初始偏心距初始偏心距ei 参考以往工程经验和国外规范,附加偏心距参考以往工程经验和国外规范,附加偏心距ea取取20mm与与h/30 两者中的较大值,此处两者中的较大值,此处h是指偏心方向的截面尺寸。是指偏心方向的截面尺寸。一、附加偏心距一、附加偏心距附加偏心矩附加偏心矩 二、二阶弯矩对偏心受压柱的影响二、二阶弯矩对偏心受压柱的影响 由于侧向挠曲变形,轴向力将产生由于侧向挠曲变形,轴向力将产生二二阶效应阶效应,引起附加弯矩。,引起附加弯矩。对于长细比较大的构件,二阶效应引对于长细比较大的构件,二阶效应引起附加弯矩不能忽略。起附加弯矩不能忽略。图示典型偏心受压柱,跨中侧向挠度图示典型偏心受压柱,跨中侧向挠度为为 f。对跨中截面,轴力对跨中截面,轴力N的的偏心距为偏心距为ei+f,即跨中截面的弯矩为,即跨中截面的弯矩为 M=N(ei+f)。在截面和初始偏心距相同的情况下,在截面和初始偏心距相同的情况下,柱的柱的长细比长细比l0/h不同,侧向挠度不同,侧向挠度 f 的大的大小不同,影响程度会有很大差别,将小不同,影响程度会有很大差别,将产生不同的破坏类型。产生不同的破坏类型。二二 阶阶 弯弯 矩矩 对于对于长细比长细比l0/h8的的短柱短柱。侧向挠度侧向挠度 f 与初始偏心距与初始偏心距ei相比很小。相比很小。柱跨中弯矩柱跨中弯矩M=N(ei+f)随轴随轴力力N的增加基本呈线性增长。的增加基本呈线性增长。直至达到截面承载力极限状直至达到截面承载力极限状态产生破坏。态产生破坏。对短柱可忽略侧向挠度对短柱可忽略侧向挠度f影影响。响。二二 阶阶 弯弯 矩矩 长细比长细比l0/h=830的的中长柱中长柱。f 与与ei相比已不能忽略。相比已不能忽略。f 随轴力增大而增大,柱跨中随轴力增大而增大,柱跨中弯矩弯矩M=N(ei+f)的增长速度的增长速度大于轴力大于轴力N的增长速度。的增长速度。即即M随随N 的增加呈明显的的增加呈明显的非线性增长。非线性增长。虽然最终在虽然最终在M和和N的共同的共同作用下达到截面承载力极限作用下达到截面承载力极限状态,但轴向承载力明显低状态,但轴向承载力明显低于同样截面和初始偏心距情于同样截面和初始偏心距情况下的短柱。况下的短柱。因此,对于中长柱,在因此,对于中长柱,在设计中应考虑侧向挠度设计中应考虑侧向挠度 f 对对弯矩增大的影响。弯矩增大的影响。二二 阶阶 弯弯 矩矩 长细比长细比l0/h 30的的长柱长柱。侧向挠度侧向挠度 f 的影响已很大的影响已很大在未达到截面承载力极限状在未达到截面承载力极限状态之前,侧向挠度态之前,侧向挠度 f 已呈已呈不不稳定发展稳定发展即柱的轴向荷载最大值发生在即柱的轴向荷载最大值发生在荷载增长曲线与截面承载力荷载增长曲线与截面承载力Nu-Mu相关曲线相交之前相关曲线相交之前这种破坏为这种破坏为失稳破坏失稳破坏,应进,应进行专门计算行专门计算二二 阶阶 弯弯 矩矩 三、偏心距增大系数三、偏心距增大系数取h=1.1h0l0偏心距增大系数偏心距增大系数 3.4.5 矩形截面正截面受压承载力的一般计算公式矩形截面正截面受压承载力的一般计算公式一、大偏心受压构件一、大偏心受压构件1.计算公式计算公式基本平衡方程大偏心受压大偏心受压 AsAsNehh0 x2.适用条件适用条件保证构件破坏时受拉钢筋先达到屈服强度保证构件破坏时受拉钢筋先达到屈服强度保证构件破坏时受压钢筋也能达到屈服强度保证构件破坏时受压钢筋也能达到屈服强度若若 ,说明受压钢筋未屈服,此时说明受压钢筋未屈服,此时 取取 ,并对受压钢筋合力点取矩:并对受压钢筋合力点取矩:大偏心受压大偏心受压 二、小偏心受压构件二、小偏心受压构件基本平衡方程1.计算公式计算公式小偏心受压小偏心受压 AsAsNehh0 x2.适用条件适用条件小偏心受压小偏心受压 1.大偏心受压(大偏心受压(受拉破坏受拉破坏)已知:截面尺寸已知:截面尺寸(bh)、材料强度、材料强度(fc,fy,fy)、构件长细比、构件长细比(l0/h)以及以及轴力轴力N和和弯矩弯矩M设计值,设计值,若若h heieib.min=0.3h0,一般可先按大偏心受压情况计算一般可先按大偏心受压情况计算3.4.6 不对称配筋矩形截面正截面承载力计算不对称配筋矩形截面正截面承载力计算一、截面设计一、截面设计截截 面面 设设 计计 As和As均未知时两个基本方程中有三个未知数,两个基本方程中有三个未知数,As、As和和 x,故无唯一解故无唯一解。与双筋梁类似,为使总配筋面积(与双筋梁类似,为使总配筋面积(As+As)最小)最小?可取可取x=x xbh0得得若若As0.002bh?则取则取As=0.002bh,然后按,然后按As为已知情况计算。为已知情况计算。若若Asr rminbh?应取应取As=r rminbh。截截 面面 设设 计计 As为已知时当当As已知时,两个基本方程有二个未知数已知时,两个基本方程有二个未知数As 和和 x,有唯一解有唯一解。先由第二式求解先由第二式求解x,若若x 2a,则可将代入第一式得,则可将代入第一式得若若x x xbh0?若若As小于小于r rminbh?应取应取As=r rminbh。则应按则应按As为未知情况重新计算确定为未知情况重新计算确定As截截 面面 设设 计计 若若x x xbh0?则应按则应按As为未知情况重新计算确定为未知情况重新计算确定As则可偏于安全的近似取则可偏于安全的近似取x=2a,按下式确定,按下式确定As若若xx xb,s ss fy,As受拉未屈服;受拉未屈服;进一步考虑,如果进一步考虑,如果x x -fy,则,则As受压未屈服;受压未屈服;x x 2b b-x xb,s ss=-fy,则,则As受压屈服。受压屈服。因此,当因此,当x xb x x (2b b-x xb),As 无论怎样配筋,都不能达到屈服无论怎样配筋,都不能达到屈服,为使用钢量最小,故可取为使用钢量最小,故可取As=max(0.45ft/fy,0.002bh)。截截 面面 设设 计计 另一方面,当偏心距很小时,另一方面,当偏心距很小时,如附加偏如附加偏心距心距ea与荷载偏心距与荷载偏心距e0方向相反方向相反,则可能发生则可能发生As一侧混凝土首先达到受压一侧混凝土首先达到受压破坏的情况,这种情况称为破坏的情况,这种情况称为“反向破坏反向破坏”。此时通常为全截面受压,由图示截面应此时通常为全截面受压,由图示截面应力分布,对力分布,对As取矩,可得,取矩,可得,e=0.5h-a-(e0-ea),h0=h-a截截 面面 设设 计计 此处不考虑偏心距增大系数此处不考虑偏心距增大系数确定确定As后,就只有后,就只有x x 和和As两个未两个未知数,故可得唯一解。知数,故可得唯一解。根据求得的根据求得的x x,可分为三种情况,可分为三种情况若若x(2b-xb),s ss=-fy,基本公式转化为下式,基本公式转化为下式,若若x h0h,应取,应取x=h,同时应取,同时应取a a=1,代入基本公式直接解得,代入基本公式直接解得As截截 面面 设设 计计 重新求解重新求解x 和和As由基本公式求解由基本公式求解x x 和和As的具体的具体运算是很麻烦的。运算是很麻烦的。迭代计算方法迭代计算方法用相对受压区高度用相对受压区高度x x,在小偏压范围在小偏压范围x x=x xb1.1,对于对于HRB335级钢筋级钢筋和和C50以下等级混凝以下等级混凝土,土,a as在在0.40.5之间,之间,近似取近似取0.43a as=x x(1-0.5x x)变化很小。变化很小。截截 面面 设设 计计 As(1)的误差最大约为的误差最大约为12%。如需进一步求较为精确的解,可如需进一步求较为精确的解,可将将As(1)代入基本公式求得代入基本公式求得x x。取取a as=0.45分析证明上述迭代是收敛分析证明上述迭代是收敛的,且收敛速度很快。的,且收敛速度很快。截截 面面 设设 计计 二、截面复核二、截面复核在截面尺寸在截面尺寸(bh)、截面配筋、截面配筋As和和As、材料强度、材料强度(fc,fy,f y)、以及构件长细比、以及构件长细比(l0/h)均为已知时,根据构件轴均为已知时,根据构件轴力和弯矩作用方式,截面承载力复核分为两种情况:力和弯矩作用方式,截面承载力复核分为两种情况:2.给定轴力作用的给定轴力作用的偏心距偏心距e0,求,求轴力设计值轴力设计值N1.给定给定轴力设计值轴力设计值N,求弯矩作用平面的,求弯矩作用平面的弯矩设计值弯矩设计值M截截 面面 复复 核核 1、给定、给定轴力设计值轴力设计值N,求弯矩作用平面的,求弯矩作用平面的弯矩设计值弯矩设计值M由于给定截面尺寸、配筋和材料强度均已知,未知数由于给定截面尺寸、配筋和材料强度均已知,未知数只有只有x和和M两个。两个。若若N Nb,为大偏心受压,为大偏心受压,若若N Nb,为小偏心受压,为小偏心受压,由由(a)式求式求x以及偏心距增以及偏心距增大系数大系数h h,代入,代入(b)式求式求e0,弯矩设计值为弯矩设计值为M=N e0。截截 面面 复复 核核 2.给定轴力作用的给定轴力作用的偏心距偏心距e0,求,求轴力设计值轴力设计值N若若h heie0b,为大偏心受压为大偏心受压未知数为未知数为x和和N两个,联立求解得两个,联立求解得x和和N。截截 面面 复复 核核 若若h heiNb)为受压破坏)为受压破坏。相相 关关 曲曲 线线 大偏心时,大偏心时,Nu随随M增大而增大增大而增大;小偏心时,小偏心时,Nu随随M增大而减小。增大而减小。对于对称配筋截面,如果截对于对称配筋截面,如果截面形状和尺寸相同,砼强度面形状和尺寸相同,砼强度等级和钢筋级别也相同,但等级和钢筋级别也相同,但配筋率不同,配筋率不同,达到界限破坏达到界限破坏时的轴力时的轴力Nb是一致的是一致的。如截面尺寸和材料强度保持如截面尺寸和材料强度保持不变,不变,Nu-Mu相关曲线随配相关曲线随配筋率的增加而向外侧增大筋率的增加而向外侧增大。相相 关关 曲曲 线线 大偏心时,大偏心时,M一定、一定、N越小越不安全;越小越不安全;小偏心时,小偏心时,M一定、一定、N越大越不安全;越大越不安全;无论大小偏心,无论大小偏心,N一定、一定、M越大越不安全。越大越不安全。1.M=0,Nu最大;最大;N=0时,时,Mu不最大,界限时,不最大,界限时,Mu最大。最大。大偏心时,大偏心时,Mu随随N增大而增大;增大而增大;小偏心时,小偏心时,Mu随随N增大而减小。增大而减小。2.大偏心时,大偏心时,Nu随随M增大而增大增大而增大;小偏心时,小偏心时,Nu随随M增大而减小。增大而减小。3.大偏心时,大偏心时,M一定、一定、N越小越不安全;越小越不安全;小偏心时,小偏心时,M一定、一定、N越大越不安全;越大越不安全;无论大小偏心,无论大小偏心,N一定、一定、M越大越不安全。越大越不安全。3.4.9 双向偏心受压构件正截面受压承载力计算双向偏心受压构件正截面受压承载力计算 在工程设计中,对于截面具有两个相互垂直对称轴的双向偏在工程设计中,对于截面具有两个相互垂直对称轴的双向偏心受压构件,心受压构件,规范规范采用弹性容许应力方法推导的近似公式,采用弹性容许应力方法推导的近似公式,计算其正截面受压承载力。计算其正截面受压承载力。设材料在弹性阶段的容许压应力为设材料在弹性阶段的容许压应力为s s,则按材料力学公式,则按材料力学公式,截面在轴心受压、单向偏心受压和双向偏心受压的承载力可分截面在轴心受压、单向偏心受压和双向偏心受压的承载力可分别表示为,别表示为,经计算和试验证实,在经计算和试验证实,在N0.1Nu0情况下,情况下,上式也可以适用于钢筋混凝土的双向偏上式也可以适用于钢筋混凝土的双向偏心受压截面承载力的计算。但上式不能心受压截面承载力的计算。但上式不能直接用于截面设计,需通过截面复核方直接用于截面设计,需通过截面复核方法,经多次试算才能确定截面的配筋。法,经多次试算才能确定截面的配筋。双双 向向 偏偏 心心 3.4.10 偏心受压构件斜截面承载力计算偏心受压构件斜截面承载力计算压力的存在压力的存在 延缓了斜裂缝的出现和开展延缓了斜裂缝的出现和开展斜裂缝角度减小斜裂缝角度减小混凝土剪压区高度增大混凝土剪压区高度增大但当压力超过一定数值但当压力超过一定数值?斜截面承载力斜截面承载力 由桁架由桁架-拱模型理论,轴向压力主要由拱作用直接传递,拱作拱模型理论,轴向压力主要由拱作用直接传递,拱作用增大,其竖向分力为拱作用分担的抗剪能力。用增大,其竖向分力为拱作用分担的抗剪能力。当轴向压力太大,将导致拱机构的过早压坏。当轴向压力太大,将导致拱机构的过早压坏。斜截面承载力斜截面承载力 受剪承载力于轴压力的关系受剪承载力于轴压力的关系斜截面承载力斜截面承载力 对矩形截面,对矩形截面,规范规范偏心受压构件的受剪承载力计算公式偏心受压构件的受剪承载力计算公式l l为计算截面的剪跨比,对为计算截面的剪跨比,对框架柱框架柱,l l=Hn/h0,Hn为柱净高;当为柱净高;当l l3时,取时,取l l=3;对对偏心受压构件偏心受压构件,l l=a/h0,当,