欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    16.3排列数公式应用.ppt

    • 资源ID:67208566       资源大小:395KB        全文页数:20页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    16.3排列数公式应用.ppt

    排列数公式的应用排列数公式的应用2.排列数的公式:排列数的公式:其中其中n,mN,并且并且mn。1.从从n个不同的元素中任取个不同的元素中任取m(mn)个不同元素,按一个不同元素,按一定的顺序排成一列定的顺序排成一列,叫做从叫做从n个不同的元素中取出个不同的元素中取出m个个元素的元素的一个排列一个排列;从从n个不同的元素中任取个不同的元素中任取m(mn)个不同元素的所个不同元素的所有排列的个数,叫做从有排列的个数,叫做从n个不同的元素中任取个不同的元素中任取m个元素个元素的的排列数排列数。用符号。用符号“Pnm”表示。表示。复习:复习:Pnm=n(n-1)(n-2)(n-m+1)n!(n-m)!=3.全排列数与阶乘:全排列数与阶乘:Pnn=n!=n.(n-1).(n-2).2.1(n+1)!=(n+1).n.(n-1).2.1=(n+1).n!例2 有5名男生,4名女生排队。(1)从中选出3人排成一排,有多少种排法?(2)全部排成一排,有有多少种排法?(3)排成两排,前排4人,后排5人,有多少种排法?例3、用0到9这十个数字,可以组成多少个 没有重复数字的三位数?百位十位个位解法一:对排列方法分步思考。特殊位置优先考虑解法二:对排列方法分类思考。符合条件的三位数可分为两类:百位 十位 个位0百位 十位 个位0百位 十位 个位根据加法原理:特殊元素优先考虑例3、用0到9这十个数字,可以组成多少个 没有重复数字的三位数?解法三:从0到9这十个数字中任取三个数字的排列数为 ,所求的三位数的个数是 其中以0为排头的排列数为 .排除法变题:用0到9这十个数字,可以组成多少个没有重复数字的三位奇数?例3、用0到9这十个数字,可以组成多少个 没有重复数字的三位数?例例4、7名学生站成一排,甲乙必须站在一起,有多少名学生站成一排,甲乙必须站在一起,有多少 种方法?种方法?捆绑法:捆绑法:要求某几个元素必须排在一起的问题,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。即将需要相邻的元素可以用捆绑法来解决问题。即将需要相邻的元素合并为一个元素,再与其他元素一起作排列,同合并为一个元素,再与其他元素一起作排列,同时要注意合并元素内部也可以做排列。时要注意合并元素内部也可以做排列。一般地:一般地:n个人站成一排,其中某个人站成一排,其中某m个人相邻,可个人相邻,可用用“捆绑法捆绑法”解决解决.例例5、由数字、由数字1、2、3、4、5组成没有重复数字且数字组成没有重复数字且数字4与与5不相邻的五位数,这种五位数的个数是不相邻的五位数,这种五位数的个数是72方法一:分步计算方法一:分步计算(插空法)插空法)第一步:将第一步:将1 1、2 2、3 3进行全排列,有进行全排列,有P P3 33 3=6=6种方法种方法第二步:再让第二步:再让4 4与与5 5插入四个空中的两个空中,共有插入四个空中的两个空中,共有P P4 42 2=12=12种方法种方法。因此,符合条件的五位数共有因此,符合条件的五位数共有P P3 33 3.P.P4 42 2=72=72(个)个)插空法:插空法:对于某两个元素或者几个元素要求不相邻的对于某两个元素或者几个元素要求不相邻的问题,可以用插空法,即先选好没有限制条件的元素,问题,可以用插空法,即先选好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空挡然后将有限制条件的元素按要求插入排好元素的空挡之中即可。若之中即可。若n个人站成一排,其中个人站成一排,其中m个人不相邻,可个人不相邻,可用用插空法插空法解决。解决。例例5、由数字、由数字1、2、3、4、5组成没有重复数字且数字组成没有重复数字且数字4与与5不相邻的五位数,这种五位数的个数是不相邻的五位数,这种五位数的个数是72方法二:整体思维方法二:整体思维(排除法)排除法)先不考虑附加条件,那么所有的五位数应有先不考虑附加条件,那么所有的五位数应有P P5 55 5=120=120个。其个。其中不符合题目条件的,即中不符合题目条件的,即4 4与与5 5相邻的五位数共有相邻的五位数共有P P4 44 4.P.P2 22 2=48=48个。个。因此,符合条件的五位数共有因此,符合条件的五位数共有P P5 55 5-P-P4 44 4.P.P2 22 2=72=72个个2:学校组织老师学生一起看电影,同一排电影票:学校组织老师学生一起看电影,同一排电影票12张。张。8个学生,个学生,4个老师,要求老师在学生之间,且老师互个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同方法?不相邻,共有多少种不同方法?练习练习1:7名学生站成一排,甲乙互不相邻,有多少种名学生站成一排,甲乙互不相邻,有多少种 方法?方法?例例6 6、有一辆客车和四辆货车同时去某地,客车不走在、有一辆客车和四辆货车同时去某地,客车不走在最前面,问这个车队有多少种不同的排法?最前面,问这个车队有多少种不同的排法?解法解法1 1:先把先把受限元素受限元素-客车排在后面的四个位置上,有客车排在后面的四个位置上,有P P4 41 1 种不同的排法,再把四个一般元素种不同的排法,再把四个一般元素-货车分别排在其余的四个货车分别排在其余的四个位置上,有位置上,有P P4 44 4 种不同的排法。根据乘法原理,共有种不同的排法。根据乘法原理,共有P P4 41 1.P.P4 44 4=96=96种不同的排法。种不同的排法。解法解法2 2:先安排先安排受限位置受限位置,从四辆货车中选一辆排在首位,有,从四辆货车中选一辆排在首位,有P P4 41 1 种排法,再把客车和其余三辆货车排在后面的四个位置上,种排法,再把客车和其余三辆货车排在后面的四个位置上,有有P P4 44 4种排法。根据乘法原理,共有种排法。根据乘法原理,共有P P4 41 1.P.P4 44 4=96=96 种不同的排法。种不同的排法。解法解法3:3:先把四辆货车排成一列,有先把四辆货车排成一列,有P P4 44 4 种不同的排法,再把种不同的排法,再把客车插入第一辆货车之后的四个位置上客车插入第一辆货车之后的四个位置上(插空法插空法),有有P P4 41 1 种不种不同的插法。根据乘法原理,共有同的插法。根据乘法原理,共有P P4 41 1.P.P4 44 4=96=96种不同的排法。种不同的排法。解法解法4:4:先不考虑限制条件,把五辆车排成一列,有先不考虑限制条件,把五辆车排成一列,有P P5 55 5种不种不同的排法,其中不符合条件同的排法,其中不符合条件(客车排在首位客车排在首位)的排法有的排法有P P4 44 4 种种(排除法排除法)。因此,符合条件的排法共有因此,符合条件的排法共有P P5 55 5-P-P4 44 4 种。种。答:这个车队共有答:这个车队共有9696种不同的排法。种不同的排法。例例6 6、有一辆客车和四辆货车同时去某地,客车不走在、有一辆客车和四辆货车同时去某地,客车不走在最前面,问这个车队有多少种不同的排法?最前面,问这个车队有多少种不同的排法?例例7 7、学校开设语文、数学、外语、政治、物理、化学校开设语文、数学、外语、政治、物理、化学、体育学、体育7 7门课,如果星期六只开设门课,如果星期六只开设4 4节课,体育不排节课,体育不排在第在第1 1、4 4节,问有多少种排列法。节,问有多少种排列法。解解1 1:7 7门课中选门课中选4 4门进行排课共有门进行排课共有P P7 74 4 种排法,其中体育课排在种排法,其中体育课排在第第1 1节有节有P P6 63 3 种排法,种排法,体育课排在第体育课排在第4 4节也有节也有P P6 63 3 种排法,种排法,所以符合条件的排法共有:所以符合条件的排法共有:P P7 74 4-2P-2P6 63 3=600=600(种)种).(.(排除法排除法)解解2:考虑:考虑体育不排在第体育不排在第1 1、4 4节。所以第节。所以第1 1,4 4节可从节可从6 6门课中选门课中选2 2门有门有P P6 62 2种,则第种,则第2 2,3 3节从余下的节从余下的5 5门中选门中选2 2门有门有P P5 52 2种,由乘法种,由乘法原理共有原理共有P P6 62 2.P.P5 52 2=600=600(种种).().(特殊位置优先考虑特殊位置优先考虑)解解3:考虑:考虑体育不排在第体育不排在第1 1、4 4节。可分两类:(节。可分两类:(1 1)体育课不排,)体育课不排,有有P P6 64 4种;(种;(2 2)体育课排进有体育课排进有P P2 21 1种,余种,余下下从从6 6门选门选3 3门门有有P P6 63 3种种,所以,所以有有P P2 21 1.P.P6 63 3种。种。由加法原理得:共由加法原理得:共有有 P P6 64 4+P+P2 21 1P P6 63 3=600(=600(种种)。(特殊元素特殊元素优先考虑优先考虑)例例8 8、7 7人站一排照相(人站一排照相(1 1)若甲、乙两人坐在两端;)若甲、乙两人坐在两端;丙不坐正中间的排法有多少种?(丙不坐正中间的排法有多少种?(2 2)若甲坐最左边,)若甲坐最左边,乙、丙不相邻,有多少种排法?(乙、丙不相邻,有多少种排法?(3 3)若甲坐在首位,)若甲坐在首位,乙、乙、丙必须相邻,丁不在末位有多少种排法?丙必须相邻,丁不在末位有多少种排法?解:(解:(1 1)甲、乙两人坐两端的排列数为)甲、乙两人坐两端的排列数为P P2 22 2,正中间的排列数正中间的排列数为为P P4 41 1,其它位置的排列数为其它位置的排列数为P P4 44 4,所以共有所以共有P P2 22 2.P.P4 41 1.P.P4 44 4=192(=192(种种)。(优限法优限法)(2)(2)因因为为甲甲坐坐左左位位,则则问问题题可可看看作作为为六六个个不不同同元元素素的的排排列列,其其中乙丙不相邻,所以符合题意的总排列为中乙丙不相邻,所以符合题意的总排列为 (3)(3)将将乙乙丙丙捆捆起起看看作作一一个个元元素素,则则问问题题为为六六个个不不同同元元素素的的排排列列问问题题,又又甲甲必必坐坐首首位位,则则问问题题又又可可看看作作五五个个不不同同元元素素的的排排列列,其中丁不在末位,排列数为其中丁不在末位,排列数为P P4 41 1,所以总的排列数为所以总的排列数为P P4 44 4.P.P5 52 2(种)(种)(插空法插空法)或)或P P6 66 6-P-P2 22 2P P5 55 5=480=480(种)(种)(排除法排除法)P22.P41.P44=192(种)(种)(捆绑法捆绑法)有附加条件的排列应用题的基本解法:1)优限法)优限法有关特殊元素有关特殊元素“在不在在不在”特殊位置的排列问题要先找特殊位置的排列问题要先找出出“受限位置受限位置”与与“受限元素受限元素”,然后以,然后以“受限位置受限位置”为主,用直接法逐位排列之,有时用间接法解之。为主,用直接法逐位排列之,有时用间接法解之。2)捆绑法)捆绑法若干个元素相邻排列问题,一般用若干个元素相邻排列问题,一般用“捆绑法捆绑法”。先把。先把相邻的若干元素相邻的若干元素“捆绑捆绑”为一个大元素与其余元素全为一个大元素与其余元素全排列,然后再排列,然后再“松绑松绑”,将这若干个元素内部全排列,将这若干个元素内部全排列3)插空法)插空法若干个元素不相邻的排列问题,一般用插空法,即若干个元素不相邻的排列问题,一般用插空法,即先将先将“普通元素普通元素”全排列,然后再在排就的每两个全排列,然后再在排就的每两个元素之间及两端插入特殊元素。元素之间及两端插入特殊元素。4)排除法)排除法对某些问题的反面比较明了,可用排除法。对某些问题的反面比较明了,可用排除法。2、12600 的正偶的正偶约约数的个数共有数的个数共有 个。个。的展开式中含的展开式中含 xyz 项的系数是项的系数是 _补充:补充:3、用、用1,2,3,4,5这五个数字,组成比这五个数字,组成比20000大且百位数上大且百位数上不是不是3的无重复数字的五位数共有的无重复数字的五位数共有 个。个。4、三个学生坐在一排十个座位上,要求每人两边均有、三个学生坐在一排十个座位上,要求每人两边均有空位,共有空位,共有 种不同坐法。种不同坐法。1254781206、用数字、用数字0,l,2,3,4,5组成没有重复数字的四位数,组成没有重复数字的四位数,有多少个能被有多少个能被25整除,有多少个比整除,有多少个比240135大的数大的数?5、书架上原来排放着、书架上原来排放着6本书,现要再插入本书,现要再插入3本书,则不同本书,则不同的插法的种数为的插法的种数为_ 504(1)21(2)407

    注意事项

    本文(16.3排列数公式应用.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开