14正弦余弦函数的性质(1).ppt
1.4正弦余弦函数的性质(正弦余弦函数的性质(1)(1 1)定义域)定义域(2 2)值)值 域域(4 4)最值)最值(3 3)奇偶性)奇偶性(6 6)周期性)周期性(5 5)对称性)对称性yxo1-1(0,0)(,1)(,0)(,-1)(2,0)五点法五点法xsinx 0 2 0-1100 x6yo-12345-2-3-41x6yo-12345-2-3-41仔细观察正弦、余弦函数的图象,并思考以下几个问题:仔细观察正弦、余弦函数的图象,并思考以下几个问题:(1)正弦、余弦函数的定义域是什么?)正弦、余弦函数的定义域是什么?(2)正弦、余弦函数的值域是什么?)正弦、余弦函数的值域是什么?正弦曲正弦曲线线余弦曲余弦曲线线R-1,1(1)正弦、余弦函数的定义域都是)正弦、余弦函数的定义域都是R。(2)正弦、余弦函数的值域都是正弦、余弦函数的值域都是-1,1。因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以 即称为正弦、余弦函数的有界性有界性。x6yo-12345-2-3-41x6yo-12345-2-3-41仔细观察正弦、余弦函数的图象,并思考以下几个问题:仔细观察正弦、余弦函数的图象,并思考以下几个问题:(3)正弦、余弦函数的奇偶性?)正弦、余弦函数的奇偶性?正弦曲正弦曲线线余弦曲余弦曲线线 正弦、余弦函数的奇偶性、单调性正弦、余弦函数的奇偶性、单调性 y=sinxyxo-1234-2-31y=sinx (x R)图像关于图像关于原点原点对称对称 (3)正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性sin(-x)=-sinx (x R)y=sinx (x R)x6yo-12345-2-3-41是是奇函数奇函数x6o-12345-2-3-41ycos(-x)=cosx (x R)y=cosx (x R)是是偶函数偶函数定义域关于原点对称定义域关于原点对称 正弦、余弦函数的奇偶性正弦、余弦函数的奇偶性 正弦函数正弦函数y=sinx最值最值 xyo-1234-2-31 余弦函数余弦函数y=cosx的最值的最值yxo-1234-2-31 (4)正弦、余弦函数的最值正弦、余弦函数的最值 正弦函数的对称性正弦函数的对称性 xyo-1234-2-31 余弦函数的对称性余弦函数的对称性yxo-1234-2-31 (5)正弦、余弦函数的对称性正弦、余弦函数的对称性诱导公式诱导公式sin(x+2sin(x+2)=)=sinxsinx,的几何意义的几何意义xyoXX+2XX+2正弦函数值是按照一定规律正弦函数值是按照一定规律不断重复地不断重复地出现的出现的 能不能从正弦、余弦函数周期性归纳出一般函能不能从正弦、余弦函数周期性归纳出一般函数的规律性?数的规律性?1.1.一般地,对于函数一般地,对于函数f(xf(x),),如果存在一个如果存在一个非零的非零的常数常数T T,使得,使得定义域内的每一个定义域内的每一个x x的值,都满的值,都满足足f(x+Tf(x+T)=)=f(xf(x),那么函数,那么函数f(xf(x)就叫做就叫做周期函数周期函数非零常数非零常数T T叫做这个函数的叫做这个函数的周期周期2.2.对于一个周期函数对于一个周期函数f(xf(x),),如果在它所有的周期如果在它所有的周期中存在一个中存在一个最小的正数最小的正数,那么这个最小的正,那么这个最小的正数就叫做数就叫做f(xf(x)的的最小正周期。最小正周期。正弦函数和余弦函数的最小正周期都是正弦函数和余弦函数的最小正周期都是22.概概念念2思考:一个周期函数的周期有多少个?思考:一个周期函数的周期有多少个?XX+2yx024-2y=sinx(xR)自变量自变量x增加增加2时函数值时函数值不断重复地不断重复地出现的出现的oyx48xoy612三角函数的周期性三角函数的周期性:3.T是是f(x)的周期,那么的周期,那么kT也一定是也一定是f(x)的周期的周期.(k为非零整数为非零整数)例例 求下列函数的周期:求下列函数的周期:(1)y=3cosx,xR;R;(2)y=sin2x,xR;R;解解(1)是以是以2为周期的周期函数为周期的周期函数.的周期为的周期为.(3)的周期为的周期为另法另法例例 求下列函数的周期:求下列函数的周期:(2)f(x)=sin2x,xR;R;(1)y=3cosx,xR;R;解解(2)归纳总结归纳总结练习练习1.求下列函数的周期:求下列函数的周期:2.(1)函数函数ysinx的周期是的周期是T=(2)函数函数ycos2x的周期是的周期是T=_.3.3.下面函数是周期函数吗?如果是周期下面函数是周期函数吗?如果是周期函数,你能找出最小正周期吗?函数,你能找出最小正周期吗?4.y=sinx(x0,4)4.y=sinx(x0,4)是周期函数吗?是周期函数吗?一般地,函数一般地,函数 y=Asin(x+)及及y=Acos(x+)(其中(其中A,为常数,为常数,且且 A0,0 )的周期是)的周期是:周期求法:周期求法:n1.1.定义法:定义法:n2.2.公式法:公式法:n3.3.图象法图象法:小结小结一个函数是周期函数,但它不一定有最小正一个函数是周期函数,但它不一定有最小正周期周期.例如,例如,f(x)a(常数常数)设设T是是f(x)(xR)的周期,那么的周期,那么kT(kZ,且且k0)也一定是也一定是f(x)的周期的周期.理解周期定义时要注意,式子理解周期定义时要注意,式子f(xT)f(x)是对是对“x”而言而言.函数函数 的周期都是的周期都是y=y=Acos(x+Acos(x+)y=y=Asin(x+Asin(x+)5.y=|sinx|及及y=|cosx|的周期为的周期为 函函 数数 性性 质质y=sinx (kz)y=cosx (kz)定义域定义域值域值域最值及相应的最值及相应的 x的集合的集合周期性周期性奇偶性奇偶性单调性单调性对称中心对称中心对称轴对称轴x Rx R-1,1-1,1x=2k时时y ymaxmax=1=1x=2k+时时 ymin=-1周期为T=2周期为周期为T=2奇函数奇函数偶函数偶函数(k,0)x=kx=2k+时时y ymaxmax=1=1x=2kx=2k-时时 ymin=-122(k+,0)2x=k+2