欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    D12数列的极限.ppt

    • 资源ID:67233816       资源大小:1.19MB        全文页数:27页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    D12数列的极限.ppt

    第一章 二二、收敛数列的性质、收敛数列的性质 三三、极限存在准则、极限存在准则 一、数列极限的定义一、数列极限的定义 第二节第二节机动 目录 上页 下页 返回 结束 数列的极限数列的极限数学语言描述:一一、数列极限的定义、数列极限的定义引例引例.设有半径为 r 的圆,逼近圆面积 S.如图所示,可知当 n 无限增大时,无限逼近 S (刘徽割圆术),当 n N 时,用其内接正 n 边形的面积总有刘徽 目录 上页 下页 返回 结束 定义定义:自变量取正整数的函数称为数列,记作或称为通项(一般项).若数列及常数 a 有下列关系:当 n N 时,总有记作此时也称数列收敛,否则称数列发散.几何解释:即或则称该数列的极限为 a,机动 目录 上页 下页 返回 结束 例如例如,趋势不定收 敛发 散机动 目录 上页 下页 返回 结束 例例1.已知证明数列的极限为1.证证:欲使即只要因此,取则当时,就有故机动 目录 上页 下页 返回 结束 例例2.已知证明证证:欲使只要即取则当时,就有故故也可取也可由N 与 有关,但不唯一.不一定取最小的 N.说明说明:取机动 目录 上页 下页 返回 结束 例例3.设证明等比数列证证:欲使只要即亦即因此,取,则当 n N 时,就有故的极限为 0.机动 目录 上页 下页 返回 结束 二、收敛数列的性质二、收敛数列的性质证证:用反证法.及且取因故存在 N1,从而同理,因故存在 N2,使当 n N2 时,有1.收敛数列的极限唯一收敛数列的极限唯一.使当 n N1 时,假设从而矛盾.因此收敛数列的极限必唯一.则当 n N 时,故假设不真!满足的不等式机动 目录 上页 下页 返回 结束 例例4.证明数列是发散的.证证:用反证法.假设数列收敛,则有唯一极限 a 存在.取则存在 N,但因交替取值 1 与1,内,而此二数不可能同时落在长度为 1 的开区间 使当 n N 时,有因此该数列发散.机动 目录 上页 下页 返回 结束 2.收敛数列一定有界收敛数列一定有界.证证:设取则当时,从而有取 则有由此证明收敛数列必有界.说明说明:此性质反过来不一定成立.例如,虽有界但不收敛.有数列机动 目录 上页 下页 返回 结束 3.收敛数列的保号性收敛数列的保号性.若且时,有证证:对 a 0,取推论推论:若数列从某项起(用反证法证明)机动 目录 上页 下页 返回 结束*4.收敛数列的任一子数列收敛于同一极限收敛数列的任一子数列收敛于同一极限.证证:设数列是数列的任一子数列.若则当 时,有现取正整数 K,使于是当时,有从而有由此证明*机动 目录 上页 下页 返回 结束 三、极限存在准则三、极限存在准则由此性质可知,若数列有两个子数列收敛于不同的极限,例如,发散!夹逼准则;单调有界准则;柯西审敛准则.则原数列一定发散.机动 目录 上页 下页 返回 结束 说明说明:1.夹逼准则夹逼准则(准则1)(P49)证证:由条件(2),当时,当时,令则当时,有由条件(1)即故 机动 目录 上页 下页 返回 结束 例例5.证明证证:利用夹逼准则.且由机动 目录 上页 下页 返回 结束 2.单调有界数列必有极限单调有界数列必有极限(准则2)(P52)(证明略)机动 目录 上页 下页 返回 结束 例例6.设证明数列极限存在.(P52P54)证证:利用二项式公式,有机动 目录 上页 下页 返回 结束 大大 大大 正正又比较可知机动 目录 上页 下页 返回 结束 根据准则 2 可知数列记此极限为 e,e 为无理数,其值为即有极限.原题 目录 上页 下页 返回 结束 又*3.柯西极限存在准则柯西极限存在准则(柯西审敛原理)(P55)数列极限存在的充要条件是:存在正整数 N,使当时,证证:“必要性”.设则时,有 使当因此“充分性”证明从略.有柯西 目录 上页 下页 返回 结束 内容小结内容小结1.数列极限的“N”定义及应用2.收敛数列的性质:唯一性;有界性;保号性;任一子数列收敛于同一极限3.极限存在准则:夹逼准则;单调有界准则;柯西准则机动 目录 上页 下页 返回 结束 思考与练习思考与练习1.如何判断极限不存在?方法1.找一个趋于的子数列;方法2.找两个收敛于不同极限的子数列.2.已知,求时,下述作法是否正确?说明理由.设由递推式两边取极限得不对不对!此处机动 目录 上页 下页 返回 结束 作业作业P30 3(2),(3),4 ,6P56 4(1),(3)4(3)提示:可用数学归纳法证 第三节 目录 上页 下页 返回 结束 故极限存在,备用题备用题 1.1.设,且求解:解:设则由递推公式有数列单调递减有下界,故利用极限存在准则机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 2.设证证:显然证明下述数列有极限.即单调增,又存在“拆项相拆项相消消”法法

    注意事项

    本文(D12数列的极限.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开