欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第6章 最优控制.ppt

    • 资源ID:67244094       资源大小:1.62MB        全文页数:78页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第6章 最优控制.ppt

    第6章 线性二次型的最优控制最优控制最优控制线性二次型最优控制线性二次型最优控制 西华大学电气信息学院西华大学电气信息学院第6章 线性二次型的最优控制q什么是最优控制?寻找寻找容许控制作用容许控制作用(规律),使动态系统(规律),使动态系统(受控对象)从初始状态转移到某种要求的(受控对象)从初始状态转移到某种要求的终端状态,且保证所规定的终端状态,且保证所规定的性能指标(目标性能指标(目标函数)取最大(最小)值。函数)取最大(最小)值。第6章 线性二次型的最优控制 现代控制理论是研究系统状态的控制和观测的理论,主要包括5个方面:线性系统理论:研究线性系统的性质,能观性、能控性、稳定性等。系统辨识:根据输入、输出观测确定系统的数学模型。最优控制:寻找最优控制向量u(t)最佳滤波(卡尔曼滤波):存在噪声情况下,如何根据输入、输出估计状态变量。适应控制:参数扰动情况下,控制器的设计1.最优控制理论的发展第6章 线性二次型的最优控制先期工作:1948年,维纳(N.Wiener)发表控制论,引进了信息、反馈和控制等重要概念,奠定了控制论(Cybernetics)的基础。并提出了 相对于某一性能指标进行最优设计的概念。1954年,钱学森编著工程控制论,作者系统地揭示了控制论对自动化、航空、航天、电子通信等科学技术的意义和重大影响。其中“最优开关曲线”等素材,直接促进了最优控制理论的形成和发展。最优控制的发展简史:最优控制的发展简史:第6章 线性二次型的最优控制 19531957年,贝尔曼(R.E.Bellman)创立“动态规划”原理。为了解决多阶段决策过程逐步创立的,依据最优化原理,用一组基本的递推关系式使过程连续地最优转移。“动态规划”对于研究最优控制理论的重要性,表现于可得出离散时间系统的理论结果和迭代算法。19561958年,庞特里亚金创立“最大值原理”。它是最优控制理论的主要组成部分和该理论发展史上的一个里程碑。对于“最大值原理”,由于放宽了有关条件的使得许多古典变分法和动态规划方法无法解决的工程技术问题得到解决,所以它是解决最优控制问题的一种最普遍的有效的方法。同时,庞特里亚金在最优过程的数学理论著作中已经把最优控制理论初步形成了一个完整的体系。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有不等式约束条件下的非线性最优必要条件还有不等式约束条件下的非线性最优必要条件(库恩库恩图克定理图克定理)以以及卡尔曼的关于随机控制系统最优滤波器等。及卡尔曼的关于随机控制系统最优滤波器等。理论形成阶段:第6章 线性二次型的最优控制 经典控制理论设计控制方法 幅值裕量、相位裕量(频率指标)上升时间、调节时间、超调量(时域 指标)特点:系统的控制结构是确定的,控制参数设计一般采用试凑方法,不是最优结果。第6章 线性二次型的最优控制 最优化(optimization)技术是研究和解决最优化问题的一门学科,它研究和解决如何从一切可能的方案中寻找最优的方案。也就是说,最优化技术是研究和解决如下两个问题:(1)如何将最优化问题表示为数学模型(2)如何根据数学模型(尽快)求出其最优解 最优控制(optimal control)是控制理论中的优化技术。寻找在某种性能指标要求下最好的控制。第6章 线性二次型的最优控制 现有产品A、B,每种产品各有两道工序,分别由两台机器完成,其所需工时如下表所示,且每台机器每周最多只能工作40小时。若产品A的单价为200元,产品B的单价为500元,应如何安排生产计划,即A、B各应生产多少可使总产值最高。解:设该车间每周应生产产品A、B的件数分别为X1、X2,由于每台机器工作时间有限制,则有约束条件:在这些约束条件下选择X1、X2,使总产值达到最大。第一道工序第一道工序第一道工序第一道工序产品产品A1.5h2h产品产品B5h4h 例例0-1 0-1 生产计划安排问题生产计划安排问题第6章 线性二次型的最优控制 设有一盛放液体的连续搅拌槽。如下图所示。槽内装有不停地转动着的搅拌器J,使液体经常处于完全混合状态。槽中原放0的液体,现需将其温度经1小时后升高到40。为此在入口处送进一定量的液体,其温度为u(t),出口处流出等量的液体,以便保持槽内液面恒定。试寻找u(t)的变化规律,使槽中液体温度经1小时后上升到40,并要求散失的热量最小。解:因假定槽中液体处于完全混合状态,故可用x(t)表示其温度。由热力学可知,槽中液体温度的变化率与温差u(t)一x(t)成正比,为简便计,令比例系数为1,于是有 在1小时内散失掉的热量可用下式表示:其中g和r都是正的常数。因此在目前情况下,最 优控制问题是:找u(t)的变化规律使槽中液体 经I小时后从0上升到40,并要求散失的热 量最小,即方程(4)中J(u)取最小值。例例0-2 0-2 搅拌槽的温度控制搅拌槽的温度控制第6章 线性二次型的最优控制q 静态最优化问题。最优化问题的解不随时间t的变化而变化,则称为静态最优化(参数最优化)问题。解决方法:线性规划和非线性规划法。q 动态最优化问题。如果最优化问题的解随时间t的变化而变化,即变量是时间t的函数,则称为动态最优化(最优控制)问题。解决方法:动态规划和最大值原理。其它分类:无约束与有约束 确定性和随机性 线性和非线性 2.最优化问题的分类第6章 线性二次型的最优控制3.最优化问题的解法1)间接法(又称解析法)对于目标函数及约束条件具有简单而明确的数学解析表达式的最优化问题,通常可采用间接法(解析法)来解决。其求解方法是先按照函数极值的必要条件,用数学分析方法(求导数方法或变分方法)求出其解析解,然后按照充分条件或问题的实际物理意义间接地确定最优解。间接法(解析法)无约束法有约束法经典微分法极大值法经典变分法库恩-图克法第6章 线性二次型的最优控制 2)直接法(数值解法)对于目标函数较为复杂或无明确的数学表达式或无法用解析法求解的最优化问题,通常可采用直接法(数值解法)来解决。直接法的基本思想,就是用直接搜索方法经过系列的迭代以产生点的序列(简称点列),使之逐步接近到最优点。直接法常常是根据经验或试验而得到的。直接法(数值解法)区间消去法(一维搜索)爬 山 法(多维搜索)菲波纳奇(Fibonacci)法黄金分割(0.618)法函数逼近法(插值法)变量加速法步长加速法方向加速法单纯形及随机搜索法第6章 线性二次型的最优控制 3)以解析法为基础的数值解法。解析与数值计算相结合的方法。4)网络最优化方法。以网络图作为数学模型,用图论方法进行投索的寻优方法。第6章 线性二次型的最优控制4.最优控制问题 最优控制问题的实质,就是求解给定条件下给定系统的控制规律,致使系统在规定的性能指标(目标函数)下具有最优值。控制装置控制装置受控对象受控对象要求状态要求状态初始状态初始状态控制作用控制作用性能最好性能最好限制条件限制条件第6章 线性二次型的最优控制 1.最优控制问题的性能指标(1)积分型性能指标 (拉格朗日型)(2)末值型性能指标 (梅耶型)(3)综合性能指标 (鲍尔扎型)第6章 线性二次型的最优控制 2.最优控制问题的数学模型用以下4个方程来描述(1)给定系统的状态方程(3)给定性能指标(2)状态方程的边界条件(4)允许控制域 u(t)确定一个最优控制u*(t),使系统从初始状态x(t0),转移到终端状态x(tf),并使性能指标J(u)具有极大(极小)值。第6章 线性二次型的最优控制第5章 线性二次型的最优控制本章主要内容:q 6.1 线性二次型问题q 6.2 状态调节器q 6.3 输出调节器q 6.4 跟踪器线性二次型问题的特点 (1)最优解可写成统一的解析表达式,实现求解过程规范化 (2)可以兼顾系统的性能指标(快速性、准确性、稳定性、灵敏度)第6章 线性二次型的最优控制6.1 线性二次型问题线性二次性问题的提法:设线性时变系统的状态方程为 假设控制向量 不受约束,用 表示期望输出,则误差向量为正定二次型正定二次型 半正定二次型半正定二次型实对称阵实对称阵A A为为正定(正定(半正定半正定)的充要条件是全部特征值的充要条件是全部特征值00(=0=0)。加权矩阵总可化为对称形式。加权矩阵总可化为对称形式。求最优控制 ,使下列二次型性能指标最小。第6章 线性二次型的最优控制性能指标的物理含义:加权矩阵的意义:(1)F,Q,R是衡量误差分量和控制分量的加权矩阵,可根据各分量的重要性灵活选取。(2)采用时变矩阵Q(t),R(t)更能适应各种特殊情况。例如:Q(t)可开始取值小,而后取值大第6章 线性二次型的最优控制线性二次型问题的本质:用不大的控制,来保持较小的误差,以达到能量和误差综合最优的目的。线性二次型问题的三种重要情形:第6章 线性二次型的最优控制6.2 状态调节器问题 设线性时变系统的状态方程为 假设控制向量 不受约束,求最优控制 ,使系统的二次型性能指标取极小值。6.2.1 有限时间状态调节器问题物理意义:以较小的控制能量为代价,使状态保持在零值附近。第6章 线性二次型的最优控制解:1.应用最小值原理求解u(t)关系式因控制不受约束,故沿最优轨线有:(R(t)R(t)正定,保证其逆阵的存在。)正定,保证其逆阵的存在。)规范方程组:写成矩阵形式:其解为:下面思路:下面思路:确定确定 与与 的关系,带入的关系,带入 (5-65-6)形成)形成状状态反馈态反馈第6章 线性二次型的最优控制横截条件给出了终端时刻二者的关系:即为了与(5-10)建立联系,将(5-9)写成向终端转移形式:(5-13)-(5-12)*F 可得第6章 线性二次型的最优控制可实现最优线性反馈控制下面思路:求解P(t),但直接利用(5-16)求解,涉及矩阵求逆,运算量大R-1(t)BT(t)B(t)A(t)1/sP(t)x(t)x(t0)u(t)第6章 线性二次型的最优控制(5-17)对时间求导2.应用其性质求解p(t)(5-20)与(5-19)相等,可得黎卡提方程(Riccati)边界条件:第6章 线性二次型的最优控制还可进一步证明,最优性能指标为:黎卡提方程求解问题:(1)可以证明,P(t)为对称矩阵,只需求解n(n+1)/2个一阶微分方程组。(2)为非线性微分方程,大多数情况下只能通过计算机求出数值解。第6章 线性二次型的最优控制(1)根据系统要求和工程实际经验,选取加权矩阵F,Q,R3.状态调节器的设计步骤(2)求解黎卡提微分方程,求得矩阵P(t)(3)求反馈增益矩阵K(t)及最优控制u*(t)(4)求解最优轨线x*(t)(5)计算性能指标最优值第6章 线性二次型的最优控制在在MATLAB中,命令中,命令可解可解连续时间连续时间的的线线性二次型性二次型调节调节器器问题问题,并可解与其有关的黎卡提方程。,并可解与其有关的黎卡提方程。该该命令可命令可计计算最算最优优反反馈馈增益矩增益矩阵阵K,并且,并且产产生使性能指生使性能指标标。在在约约束方程束方程条件下达到极小的反条件下达到极小的反馈馈控制律控制律第6章 线性二次型的最优控制 另一个命令另一个命令 也可也可计计算相关的矩算相关的矩阵阵黎卡提方程黎卡提方程的唯一正定解的唯一正定解P。如果。如果为稳为稳定矩定矩阵阵,则总则总存在存在这样这样的正定矩的正定矩阵阵。利用。利用这这个命令能求个命令能求闭环闭环极点或极点或的特征的特征值值。对对于某些系于某些系统统,无无论选择论选择什么什么样样的的K,都不能使,都不能使为稳为稳定矩定矩阵阵。在此情况下。在此情况下。这这个矩个矩阵阵黎卡提方程不存在正定矩黎卡提方程不存在正定矩阵阵。对对此情此情况,况,命令命令不能求解,不能求解,详见详见MATLAB Prgram 6.1。第6章 线性二次型的最优控制例5-1已知一阶系统的微分方程为求使性能指标为极小值时的最优控制。解:二次型性能指标为:其中p(t)为黎卡提方程的解最优轨为如下时变一阶微分方程的解(可得出解析解)第6章 线性二次型的最优控制利用matlab进行最优控制系统仿真第6章 线性二次型的最优控制第6章 线性二次型的最优控制第6章 线性二次型的最优控制 设线性定常系统的状态方程为 假设控制向量 不受约束,求最优控制 ,使系统的二次型性能指标取极小值。6.2.1 无限时间状态调节器问题说明:1)要求系统完全能控。2)F=0,人们所关心的总是系统在有限时间内的响应第6章 线性二次型的最优控制 最优轨线满足下列线性定常齐次方程:性能指标最优值 可以证明:P P为为正定正定常数矩阵常数矩阵,满足下列黎卡提,满足下列黎卡提矩阵代数方程矩阵代数方程。可以证明:线性定常最优调节器组成的闭环反馈控制系统,是渐近稳定的。第6章 线性二次型的最优控制例5-1研究如研究如图图所示的系所示的系统统。假。假设设控制信号控制信号为为试试确定最确定最优优反反馈馈增益矩增益矩阵阵K,使得下列性能指,使得下列性能指标标达到极小达到极小式中式中 由由图图可看出,被控可看出,被控对对象的状象的状态态方程方程为为式中式中第6章 线性二次型的最优控制 以下以下说说明退化矩明退化矩阵阵黎卡提代数方程如何黎卡提代数方程如何应应用于最用于最优优控制系控制系统统的的设计设计。求。求解解(6.26),将其重写),将其重写为为注意到注意到A为实为实矩矩阵阵,Q为实对为实对称矩称矩阵阵,P为实对为实对称矩称矩阵阵。因此,上式可写。因此,上式可写为为该该方程可方程可简简化化为为第6章 线性二次型的最优控制由上式可得到下面由上式可得到下面3个方程个方程将将这这3个方程个方程联联立,解出立,解出且要求且要求P为为正定的,可得正定的,可得参照式参照式(6.25),最最优优反反馈馈增益矩增益矩阵阵K为为第6章 线性二次型的最优控制因此,最因此,最优优控制信号控制信号为为注意,由上式注意,由上式给给出的控制律出的控制律对对任意初始状任意初始状态态在在给给定的性能指定的性能指标标下都能得出最下都能得出最优结优结果。果。图图6.8是是该该系系统统的方的方块图块图。第6章 线性二次型的最优控制在在MATLAB中,命令中,命令可解可解连续时间连续时间的的线线性二次型性二次型调节调节器器问题问题,并可解与其有关的黎卡提方程。,并可解与其有关的黎卡提方程。该该命令可命令可计计算最算最优优反反馈馈增益矩增益矩阵阵K,并且,并且产产生使性能指生使性能指标标。在在约约束方程束方程条件下达到极小的反条件下达到极小的反馈馈控制律控制律第6章 线性二次型的最优控制 另一个命令另一个命令 也可也可计计算相关的矩算相关的矩阵阵黎卡提方程黎卡提方程的唯一正定解的唯一正定解P。如果。如果为稳为稳定矩定矩阵阵,则总则总存在存在这样这样的正定矩的正定矩阵阵。利用。利用这这个命令能求个命令能求闭环闭环极点或极点或的特征的特征值值。对对于某些系于某些系统统,无无论选择论选择什么什么样样的的K,都不能使,都不能使为稳为稳定矩定矩阵阵。在此情况下。在此情况下。这这个矩个矩阵阵黎卡提方程不存在正定矩黎卡提方程不存在正定矩阵阵。对对此情此情况,况,命令命令不能求解,不能求解,详见详见MATLAB Prgram 6.1。第6章 线性二次型的最优控制MATLAB Program 6.1%Design of quadratic optimal regulator system%*Determination of feedback gain matrix K for quadratic%optimal control*%*Enter state matrix A and control matrix B*A=-1 1;0 2B=1;0;%*Enter matrices Q and R of the quadratic performanceQ=1 0;0 1;R=1;%*To obtain optimal feedback gain matrix,K,enter the following command*K=lqr(A,B,Q,R)Warning:Matrix is singular to working precision.K=NaN NaN%*lf we enter the command K,P,E=lqr(A,B,Q,R).then*K,P,E=lqr(A,B,Q,R)Warning;Matrix is singular to working precision.K=NaN NaNP=-lnf -lnf -lnf -lnfE=-2.0000 -1.4142第6章 线性二次型的最优控制例例6.13 考考虑虑系系统统的状的状态态空空间间表达式表达式为为式中式中在确定最在确定最优优控制律控制律时时,假,假设输设输入入为为零,即零,即r=0。确定状确定状态态反反馈馈增益矩增益矩阵阵K(t),使得性能指标达到极小。这里),使得性能指标达到极小。这里假假设设控制信号控制信号u为为第6章 线性二次型的最优控制为为了得到快速响了得到快速响应应,与与 和和R相比必相比必须须充分大。充分大。为为了利用了利用MATLAB求解,可使用命令求解,可使用命令在在该该例中,例中,选选取取MATLAB Program 6.4A=0 1 0;0 0 1;0 -2 -3;B=0;0;1Q=100 0 0;0 1 0;0 0 1;R=1;第6章 线性二次型的最优控制%-Design of quadratic optimal control system%*To obtain the optimal state feedback gain matrix K,%enter the following command*K=lqr(A,B,Q,R)k=100.0000 53.1200 11.6711k1=K(1),k2=K(2),k3=K(3)k1=100.0000k2=53.1200k3=11.6711第6章 线性二次型的最优控制 采用确定的矩采用确定的矩阵阵K来研究所来研究所设计设计的系的系统对阶跃输统对阶跃输入的响入的响应应特性。特性。所所设计设计的系的系统统的状的状态态方程方程为为 输输出方程出方程为为为为求求对单对单位位阶跃输阶跃输入的响入的响应应,使用下列命令,使用下列命令式中式中第6章 线性二次型的最优控制 MATLAB Program 6.5可求出可求出该该系系统对单统对单位位阶跃阶跃的响的响应应。图图6.10画出了画出了输输出出y对时间对时间t的响的响应应曲曲线线,图图6.11在同一在同一张图张图上画出上画出了了,和和对对t的响的响应应曲曲线线。MATLAB Program 6.5A=0 1 0;0 0 1;0 -2 -3;B=0;0;1K=100.0000 53.1200 11.6711;K1=K(1);k2=K(2);k3=K(3);C=1 0 0;D=0;AA=A-B*K;BB=B*k1;CC=C;DD=D;第6章 线性二次型的最优控制t=0:0.01:8;y,x,t=stepAA,BB,CC,DD);%*Toplot the unit-step response curve y(=xl)versus t,%enter the following command*plot(t,y)gridtitle(Unit-Step Response of Quadratic Optimal Control System)ylabel(Output y=xl)%*To plot curves x1,x2,x3 versus t on one diagram,enter%the following command*plot(t,x)gridtitle(Response Curvesx1,x2,x3,versus t)xlabel(t Sec)ylabel(x1,x2,x3)text(2.6,1.35,x1)text(1.2,1.5,x2)text(0.6,3.5,x3)第6章 线性二次型的最优控制二次型最二次型最优优控制系控制系统统的的单单位位阶跃阶跃响响应应曲曲线线对对t的响的响应应曲曲线线第6章 线性二次型的最优控制例5-2已知二阶系统的状态方程为求使性能指标为极小值时的最优控制。解:化为标准矩阵形式二次型性能指标为:验证系统能控性第6章 线性二次型的最优控制展开整理得到三个代数方程 P满足下列黎卡提矩阵代数方程:系统完全能控,且Q,R为正定对称矩阵,故最优控制存在且唯一解之利用矩阵P正定的性质第6章 线性二次型的最优控制与给定条件 矛盾,故假设 不成立 下面用反证法证明 不是所求的根最优控制为:利用矩阵P正定的性质第6章 线性二次型的最优控制 最优状态调节器闭环系统结构图 闭环系统传递函数 闭环极点为 a2,实根,过阻尼 a2,复根,衰减震荡1/s1/s a+1Gx1(t)u*(t)x1(t)第6章 线性二次型的最优控制 利用matlab计算和仿真A=0 1;0 0B=0;1a=2b=1Q=1 b;b aR=1K=lqr(A,B,Q,R,0)第6章 线性二次型的最优控制第6章 线性二次型的最优控制6.3 输出调节器6.2.1 有限时间输出调节器问题 设线性时变系统的状态方程为 假设控制向量 不受约束,求最优控制 ,使下列二次型性能指标最小。物理意义:以较小的控制能量为代价,使输出保持在零值附近。根据系统能观条件,输出调节器问题可转化为状态调节器问题 第6章 线性二次型的最优控制 将(5-29)代入(5-30)若 是半正定的,则转化为状态调节器问题。最优控制为:可以证明,如果系统完全可观测,则 是半正定的。第6章 线性二次型的最优控制有限时间最优输出调节器系统结构图。说明:说明:(1 1)仍然是)仍然是状态反馈状态反馈,而不是输出反馈,说明构成最优控,而不是输出反馈,说明构成最优控制系统需要制系统需要全部信息全部信息。(2 2)从工程上讲,)从工程上讲,x(t)x(t)是通过是通过y(t)y(t)观测出来的,所以控制观测出来的,所以控制的先决条件是,受控系统应是的先决条件是,受控系统应是可观测可观测的。的。R-1(t)BT(t)B(t)A(t)1/sP(t)x(t)x(0)u(t)C(t)y(t)第6章 线性二次型的最优控制6.2.2 无限时间输出调节器问题 设线性定常系统的状态方程为 假设控制向量 不受约束,求最优控制 ,使下列二次型性能指标最小。与无限时间状态调节器问题类似,最优控制为:第6章 线性二次型的最优控制例5-3(学生自己看)已知二阶系统的状态方程为求使性能指标为极小值时的最优控制。解:化为标准矩阵形式二次型性能指标为:验证系统能控性验证系统能观性第6章 线性二次型的最优控制展开整理得到三个代数方程 P满足下列黎卡提矩阵代数方程:系统完全能控且完全能观,故最优控制为:解之利用矩阵P正定的性质第6章 线性二次型的最优控制闭环传递函数为:最优控制系统的结构图:说明:加权系数r的取值,只影响闭环系统的增益,阻尼系数不变1/s2 r-1/2+2y(t)u(t)r-1/4s第6章 线性二次型的最优控制利用matlab计算和仿真A=0 1;0 0B=0;1C=1 0D=0sys=ss(A,B,C,D)Q=1R=1K=lqry(sys,Q,R,0)第6章 线性二次型的最优控制第6章 线性二次型的最优控制6.4 跟踪器(学生自己看)设线性时变系统的状态方程为(系统完全可观测)假设控制向量 不受约束,用 表示期望输出,则误差向量为 求最优控制 ,使下列二次型性能指标最小。物理意义:以较小的控制能量为代价,使误差保持在零值附近。6.4.1 线性时变系统的跟踪问题第6章 线性二次型的最优控制解:1.应用最小值原理求解u(t)关系式规范方程组:写成矩阵形式:因控制不受约束,故沿最优轨线有:为非齐次线性时变微分方程,其中右边第二项起着驱动函数的作用。第6章 线性二次型的最优控制横截条件给出了终端时刻二者的关系:将(5-42)代入(5-41),并化简整理,可得:其解为:第6章 线性二次型的最优控制(5-43)对时间求导2.应用系统特性求解p(t),g(t)(5-45)与(5-46)相等,可得第6章 线性二次型的最优控制边界条件:对所有 均成立,推出:第6章 线性二次型的最优控制综上所述,跟踪问题的最优控制规律如下:q q 最优跟踪系统反馈结构与最优输出调节器反馈结构完全相同,与预期输出无关。第6章 线性二次型的最优控制q 最优跟踪系统与最优输出调节器系统的本质差异,反映在 上。互为负的转置关系(伴随矩阵)q 由(5-54)可知,为了求得 ,必须在控制过程开始之前知道全部 的信息。与 有关,则最优控制的现时值也要依赖于预期输出 的全部未来值。关键在于掌握 变化规律的方法:预估,随机处理(平均最优)第6章 线性二次型的最优控制 最优跟踪系统结构图伴随矩阵伴随矩阵CT(t)Q(t)1/sGT(t)yr(t)B(t)R-1(t)BT(t)1/sGT(t)g0(t)x0(t)x(t)C(t)y(t)第6章 线性二次型的最优控制设线性定常系统的状态方程为(系统完全可观、可控)控制向量 不受约束,用 表示期望输出,则误差向量为 求最优控制 ,使下列二次型性能指标最小。6.4.2 线性定常系统的跟踪问题第6章 线性二次型的最优控制当 足够大且为有限值时,可得出如下近似结果:线性定常最优跟踪系统结构图PBR-1BT-AT-1CTQ-Pyr(t)B(t)R-1(t)BT(t)1/sAg(t)x0(t)x(t)C(t)y(t)第6章 线性二次型的最优控制例5-4已知一阶系统的状态方程:求使性能指标为极小值时的最优控制。解:二次型性能指标为:其中p(t),g(t)为下列方程的解:第6章 线性二次型的最优控制第6章 线性二次型的最优控制第6章 线性二次型的最优控制第5章 结束语q 研究对象:线性系统在二次型性能指标下的最优控制问题。q 调节器问题:状态调节器、输出调节器q 跟踪问题q 与经典控制问题的关系q 线性二次型最优控制问题可看作是经典控制问题的延伸,是在综合性能指标下的最优控制问题。q线性二次型最优控制问题的性能指标与经典控制中的性能指标,如适度的超调量、高的环路增益、平坦的频率响应等是一致的。q 在实际工程中,如对控制分量加以限制,则最优解将不是线性的。本章要点:状态调节器、输出调节器和跟踪问题的控制规律

    注意事项

    本文(第6章 最优控制.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开