欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八年级数学上册_第十二章轴对称复习课件_人教新课标版 (2).ppt

    • 资源ID:67289043       资源大小:2.34MB        全文页数:43页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八年级数学上册_第十二章轴对称复习课件_人教新课标版 (2).ppt

    第12章轴对称复习课件(新人教版八年级上)人教版八年上学期人教版八年上学期第十二章复习第十二章复习人教版人教版8 8年上学期年上学期第十二章轴对称复习第十二章轴对称复习本本 章章 知知 识识 结结 构构生生活活中中的的对对称称轴对称轴对称轴对称图形的坐标特征轴对称图形的坐标特征等边三角形的性质等边三角形的性质等边三角形的判定等边三角形的判定含含30角的直角三角形的性质角的直角三角形的性质两个图形成轴对称两个图形成轴对称轴对称图形轴对称图形等腰三角形的性质等腰三角形的性质等腰三角形的判定等腰三角形的判定等腰三角形等腰三角形等边三角形等边三角形轴对称的性质轴对称的性质中垂线的性质与判定中垂线的性质与判定画画轴轴对对称称图图形形应应 用用轴对称的画法轴对称的画法折叠(对折)如果一个图形沿着一条直线对折,两侧的如果一个图形沿着一条直线对折,两侧的如果一个图形沿着一条直线对折,两侧的如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是图形能够完全重合,这个图形就是图形能够完全重合,这个图形就是图形能够完全重合,这个图形就是轴对称图形轴对称图形轴对称图形轴对称图形。折痕所在的这条直线叫做折痕所在的这条直线叫做折痕所在的这条直线叫做折痕所在的这条直线叫做_。对称轴对称轴对称轴对称轴1.1.轴对称图形的定义:轴对称图形的定义:轴对称图形的定义:轴对称图形的定义:对称轴对称轴这条直线就是这条直线就是图图(1)能与图能与图(2)重合吗?重合吗?这条直线也是这条直线也是_对称轴对称轴关于这条直线对称关于这条直线对称2.两个图形两个图形关于某直线对称:关于某直线对称:把一个把一个图形图形沿着某一条直线折叠,如果沿着某一条直线折叠,如果 它能与另一个它能与另一个图形重合,那么我们就说这两个图形图形重合,那么我们就说这两个图形_。利用轴对称,可以设计出精美的图案。请你利用轴对称,可以设计出精美的图案。请你用所学的知识来欣赏下列美丽的图案用所学的知识来欣赏下列美丽的图案mABCFDE3.定义:经过线段的中点且定义:经过线段的中点且与之垂直的直线就叫与之垂直的直线就叫_ 也叫也叫中垂线中垂线4.轴对称的性质:轴对称的性质:如果两个图形关于某条直线对称,如果两个图形关于某条直线对称,那么对称轴是对称点的连垂直平分线分线那么对称轴是对称点的连垂直平分线分线即:对称点的连线被对称轴垂直且平分即:对称点的连线被对称轴垂直且平分.垂直平分线垂直平分线练习练习1 1,下面这些图形是不是轴对称图形?为什么?,下面这些图形是不是轴对称图形?为什么?是是是不是达达 标标 题题 判断题判断题:选择题选择题:操作题操作题:(画出下面图形的对称轴画出下面图形的对称轴画出下面图形的对称轴画出下面图形的对称轴)1 1 1 1、飞机图案不一定是轴对称图形。、飞机图案不一定是轴对称图形。、飞机图案不一定是轴对称图形。、飞机图案不一定是轴对称图形。()2 2 2 2、半圆有无数条对称轴。、半圆有无数条对称轴。、半圆有无数条对称轴。、半圆有无数条对称轴。()1 1 1 1、有有有有()()()()条对称轴。条对称轴。条对称轴。条对称轴。A.5 B.10 C.1A.5 B.10 C.1A.5 B.10 C.1A.5 B.10 C.12 2 2 2、下面汉字下面汉字下面汉字下面汉字()()()()是轴对称图形。是轴对称图形。是轴对称图形。是轴对称图形。A.A.A.A.字字字字 B.B.B.B.小小小小 C.C.C.C.日日日日A AC C练习:练习:判断题:1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。()2、正方形只有两条对称轴。()选择题:1、长方形有()条对称轴。A.1 B.2 C.32、下面的数字()是轴对称图形。A.3 B.9 C.7A AB B练习:特殊的轴对称图形:正方形、长方形、等腰三角形、等腰梯形和圆都是轴对称图形。有的轴对称图形有不止一条对称轴。1.找到一组对应点,2.画出以这两点为顶点的线段的垂直平分线。5.如何画如何画轴对称图形的对称轴呢?轴对称图形的对称轴呢?作法:作法:2、连接、连接AB、BC、CA。ABC即为所求即为所求的三角形。的三角形。练习练习:如图,已知如图,已知ABC和和直线直线 ,作出与作出与ABC关于关于直线直线 对对称的图形。称的图形。1、分别作出点、分别作出点A、B关于关于直线直线 的的对称点对称点A、B;BACAB6.6.轴对称图形的画法轴对称图形的画法 几何图形都可以看作由点组成,几何图形都可以看作由点组成,我们只要分别作出这些(特殊)点关我们只要分别作出这些(特殊)点关于对称轴的对应点,再连接对应点,于对称轴的对应点,再连接对应点,就可以得到原图形的轴对称图形;就可以得到原图形的轴对称图形;同样:同样:对于一些由直线、线段或对于一些由直线、线段或射线组成的图形,只要作出图形中的一射线组成的图形,只要作出图形中的一些特殊点(如:端点)的对称点,连接些特殊点(如:端点)的对称点,连接对称点,就可以得到原图形的轴对称图对称点,就可以得到原图形的轴对称图形。形。7.对称图形(对称点)的坐标关系;点(点(x,y)关于关于x轴对称的电的坐标为:轴对称的电的坐标为:(,););点(点(x,y)关于关于y轴对称的电的坐标为:轴对称的电的坐标为:(,););X -y-X y8.如何利用坐标法画轴对称图形:如何利用坐标法画轴对称图形:只要先求出已知图形中的只要先求出已知图形中的一些特殊点(如多边形的顶点)一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接的对称点的坐标,描出并连接这些点,就可以得到这个图形这些点,就可以得到这个图形的轴对称图形。的轴对称图形。在直角坐标系中,已知在直角坐标系中,已知ABCABC顶点顶点A,B,CA,B,C坐标分别为:坐标分别为:A(-2,4),B(-3,2)A(-2,4),B(-3,2),C(-1,1)C(-1,1),试作出试作出ABCABC关于关于y y轴的对称轴的对称 A AB BC C.练习5:XY0 1 2 3 4 -4 -3 -2 -112345ABC.A.B.C(-2,4)(-3,2)(-1,1)(1,1)(3,2)(2,4),作法:作法:1.1.由由Y Y轴对称的坐标特点可知轴对称的坐标特点可知A A,B B,C C各对称点坐标分别为:各对称点坐标分别为:A A(2,4),(2,4),B B(3,2)(3,2),C C(1,1).(1,1).2.2.在坐标系中作出点在坐标系中作出点A AB BC C3.3.连结连结A AB B,A AC C B BC C.A AB BC C就是所求的三角形就是所求的三角形.9.9.等腰三角形的性质等腰三角形的性质 1 1 等腰三角形的两个底角等腰三角形的两个底角相等相等(等边对等角)等边对等角)2 2等腰三角形顶角的平分线,等腰三角形顶角的平分线,底边上的中线和底边上的高相互重底边上的中线和底边上的高相互重合(等腰三角形三线合一)合(等腰三角形三线合一)等腰三角形的定义:两条边相等等腰三角形的定义:两条边相等的三角形叫做等腰三角形的三角形叫做等腰三角形练习6:填空题:填空题:1.在在 ABC中,已知中,已知AB=AC,且且B=80,则则C=度,度,A=度度.2.在在ABC中,已知中,已知AB=AC,且且 A=50,则则B=度,度,C=度度.C=80A=20B=65C=6555 55 和 55 55 或7070和 4040.3.在在.等腰等腰 ABC中,如果中,如果AB=AC,且一个角等于且一个角等于70,求另两个角的度数为,求另两个角的度数为 4.在在ABC中,中,AB=5cm,BC=12cm,DE是是AC的垂直的垂直平分线,交平分线,交BC于点于点E,ABE的面积为的面积为 ;17cm17cmBECDA10.等腰三角形的判定定理等腰三角形的判定定理 如果一个三角形有两个角相等,那么如果一个三角形有两个角相等,那么这个三角形是等腰三角形。简写成:这个三角形是等腰三角形。简写成:等角等角对等边对等边练习练习7:CBAD12已知:如图,已知:如图,A=DBC=360,C=720。计算计算1和和2,并说明,并说明图中有哪些等腰三角形图中有哪些等腰三角形?解:解:1=720 2=360等腰三角形有:等腰三角形有:ABC、ABD 和和 BCD趣味数学趣味数学:如图:点如图:点B、C、D、E、F在在MAN的边上,的边上,A=15,AB=BC=CDDE=EF,求求 MEF的的度数。度数。ABCDEFMN答:答:MEF的度数的度数=75 练习8:11.等边三角形的性质:等边三角形的性质:等边三角形的三个内角都相等,等边三角形的三个内角都相等,并且每一个内角都等于并且每一个内角都等于60 等边三角形的定义:三条边都相等等边三角形的定义:三条边都相等的三角形叫做等边三角形。的三角形叫做等边三角形。ABC12.等边三角形的判定:三个角都相等的三角形是等边三角形。判定2:有一个角是 60的等腰三角形是等边三角形。判定1:1、等腰三角形的判定方法有下列几种:、等腰三角形的判定方法有下列几种:。2、等边三角形的判定方法有以下几种:、等边三角形的判定方法有以下几种:。3、等腰三角形的判定定理与性质定理的区别是、等腰三角形的判定定理与性质定理的区别是 。4、运用等腰三角形的判定定理时,应注意、运用等腰三角形的判定定理时,应注意 。1 1定义定义 2 2判定定理判定定理 条件和结论刚好相反条件和结论刚好相反在同一个三角形中在同一个三角形中1 1定义定义 2 2判定判定1 1 3 3判定判定2 213.用法归纳用法归纳 14.定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半 已知:在已知:在ABC中,中,ABAC2a,ABCACB15,CD是腰是腰AB上的高求:上的高求:CD的的长长 练习9:计计算:算:等腰三角形的底角等腰三角形的底角为为15,腰,腰长为长为2a,求腰上求腰上的高的高ABCD解:解:ABCACB15,DACABCACB 1515=30 CDAC2aa(在直角三角形中,如果一个在直角三角形中,如果一个锐锐角等于角等于30,那么它所,那么它所对对的直角的直角边边等于斜等于斜边边的一半的一半)BDC=90ABCDABCDE 在 ABC中A=60 AB=AC,点,点D是是AC的的中点中点CE=CD求证:求证:(1)BD=DE.(2)若)若DF BC于点于点F,则,则BF与与EF有何关系?有何关系?F练习练习练习练习1010:证明:证明:(1 1)AB=AC AB=AC A=60 A=60 ABC ABC是等边三角形是等边三角形.ABC=2 AB=BCABC=2 AB=BC123BF=EFBF=EF BD=DE BD=DE DFDF BCBC 2 2=3+E 3+E CE=CDCE=CD 3=E 3=E BD=DE.BD=DE.D D是是ACAC的中点的中点 1=1=ABCABCE=E=2 2 E=E=2 2(2 2)BF=EFBF=EF作业:ACBEFMN 如图:点如图:点C C是线段上一点,分别以为边是线段上一点,分别以为边作等边和,连接,与交于作等边和,连接,与交于 点。你能得到点。你能得到那些结论?并选择一个加以证明。那些结论?并选择一个加以证明。

    注意事项

    本文(八年级数学上册_第十二章轴对称复习课件_人教新课标版 (2).ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开