高考数学集合复习知识点.docx
高考数学集合复习知识点1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。元素常用小写字母a、b、c、来表示。集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做aA;元素a不属于集合A,记做a?A。3、集合中元素的特性确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A=0,1,3,4,可知0A,6?A。互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。(3)无序性:集合与其中元素的排列次序无关,如集合a,b,c与集合c,b,a是同一个集合。4、集合的分类集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。特别的,我们把不含有任何元素的集合叫做空集,记错F,如x?R|+1=0。5、特定的集合的表示为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示,请牢记。全体非负整数的集合通常简称非负整数集(或自然数集),记做N。非负整数集内排出0的集合,也称正整数集,记做N_N+。全体整数的集合通常简称为整数集Z。全体有理数的集合通常简称为有理数集,记做Q。全体实数的集合通常简称为实数集,记做R。高考数学集合简单逻辑公式任一x?A,x?B,记做ABAB,BAA=BAB=x|x?A,且x?BAB=x|x?A,或x?BCard(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有确定性;互异性;无序性2.集合表示方法列举法;描述法;韦恩图;数轴法(3)集合的运算A(BC)=(AB)(AC)Cu(AB)=CuACuBCu(AB)=CuACuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高考数学知识点两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A)cos2a=cos2a-sin2a=2cos2a-1=1-2sin2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py高考数学知识点:圆的切线方程(1)已知圆.若已知切点在圆上,则切线只有一条,利用垂直关系求斜率过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.(2)已知圆.过圆上的点的切线方程为高考数学知识点:线线平行常用方法(1)定义:在同一平面内没有公共点的两条直线是平行直线。(2)公理:在空间中平行于同一条直线的两只直线互相平行。(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。(6)面面平行的性质:若两个平行平面同时与第三个平交,则它们的交线平行。高考数学集合复习锦娘妙计1、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合x|x?P,要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题。2、注意空集的特殊性,在解题中,若未能致命集合非空时,要考虑到集合的可能性,如AB,则有A=或A两种可能,此时应分类讨论。