(6.2.1)--5.2平面简谐波的波函数.pdf
-
资源ID:67731114
资源大小:1.42MB
全文页数:28页
- 资源格式: PDF
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(6.2.1)--5.2平面简谐波的波函数.pdf
THE WAVE FUNCTION OF A FLAT SIMPLE HARMONIC第五章目录CONTENTS平面简谐波的波函数T H E W A V E F U N C T I O N O F A F L A T S I M P L E H A R M O N I C1波函数的物理意义T H E P H Y S I C A L M E A N I N G O F T H E W A V E F U N C T I O N201平面简谐波的波函数T H E WAV E F U N C T I O N O F A F L AT S I M P L E H A R M O N I C2022-1-3042022-1-304第五章第2节平面简谐波的波函数平面简谐波的波函数,一般来说,波动函数的表达式是比较复杂的,本次课只研究一种最简单最基本的波,即在均匀、无吸收的介质中,当波源作简谐运动时,在介质中所形成的波,称为平面简谐波。2022-1-3052022-1-305理论分析表明简谐波是理想模型可以证明任何非简谐的复杂的波,都可看作是由若干个不同频率的简谐波叠加而成。第五章第2节平面简谐波的波函数2022-1-3062022-1-306如图所示,两个简谐波可以合成得到一个复杂的波,反过来,这样复杂的波也可分解得到不同频率的简谐波。第五章第2节平面简谐波的波函数2022-1-3072022-1-307yxuAAO平面简谐波的波函数的建立平面简谐波的波函数的建立。这是机械波这一章的重点。比如有一平面简谐波沿x的正方向传播,波速为u ,假设波源在坐标原点o处2022-1-3082022-1-308yxuAAO平面简谐波的波函数的建立tAyOcos振动方程2022-1-3092022-1-309yxuAAO振动方向是y方向,yo是原点质点即波源,在任意时刻,t时刻相对于平衡位置的位移,A是振幅,是角频率。频率只与波源有关,传播过程中各点的振动频率不变。tAyOcos第五章第2节平面简谐波的波函数2022-1-30102022-1-3010第五章第2节平面简谐波的波函数yxuAAOPx现在如果找到任意时刻,任意位置的振动位移,我们就找到了波动函数。为了找出在ox轴上所有质点在任一时刻的位移,我们可在ox轴正方向上任取一点P,距o点的距离为x。2022-1-30112022-1-3011yxuAAOPx考察波线上任意一点P点(坐标为x),P点比O点的振动落后t的时间,即原点先振动,过了t 时间后,P点开始复制O点的振动,P点在t时刻的位移是O点在t-t时的位移,即它传过去需要的时间是距离除以速度即x/u第五章第2节平面简谐波的波函数2022-1-30122022-1-3012ttAcosttyyOP)(uxtAcos只需复制O点的振动方程就可以了,但时间得替换,因为P点在t时刻的位移是O点在t-t时的位移,只需要将O点振动方程中的时间替换为t-t就可以了,即:小 结第五章第2节平面简谐波的波函数2022-1-30132022-1-3013ttAcosttyyOP)(uxtAcos第五章第2节平面简谐波的波函数P为波传播方向上任一点描述的是一般情况具有普遍意义,能描述任意时间,任意位置的振动情况2022-1-30142022-1-3014uxtAcos平面简谐波的波函数py又称波动方程ox轴正方向传播的平面简谐波的波函数2022-1-30152022-1-3015T22uTuxtAycosxTtAy2cosxtAy2cos得波动方程的几种形式第五章第2节平面简谐波的波函数02波函数的物理意义T H E P H YS I C A L M E A N I N G O F T H E WAV E F U N C T I O N2022-1-30172022-1-3017波函数的物理意义x一定,t变化 第五章第2节波函数的物理意义xtAy2cosx2令tAcosy则2022-1-30182022-1-3018x一定,t变化 tAycosx处质点振动方程2022-1-30192022-1-3019yxuAAOPx如图所示为x取不同值时的振动曲线图,这个振动曲线在上 一章中也已经讲过的。第五章第2节波函数的物理意义2022-1-30202022-1-3020yo x tAycost一定,x变化 表明 t 时刻波传播方向上各质点的位移第五章第2节波函数的物理意义2022-1-30212022-1-3021即t时刻的波形(y-x 的关系),或者可以通俗地说,这是在某个时刻用相机拍照片拍下来的波形。是个形状。第五章第2节波函数的物理意义2022-1-30222022-1-3022x,t变化)cosuxtAy(yuxO表 明 不 同 时 刻 质 点 的 位 移 即 不 同时 刻 的 波 形,体 现 了 波 的 传 播第五章第2节波函数的物理意义2022-1-30232022-1-3023x,t变化yuxO能够看清任意时刻,任意位置的振动情况实际为拍电影第五章第2节波函数的物理意义2022-1-30242022-1-3024yxuAAOPx沿 ox 轴正方向传播沿 ox 轴负方向传播yxAAOPxu第五章第2节波函数的物理意义波传播的方向2022-1-30252022-1-3025yxuAAOPxyxAAOPxuOy=Acos t+f那o点就相对p点落后了t的时间,O点的振动方程中第五章第2节波函数的物理意义2022-1-30262022-1-3026tAyOcos)(uxtAcost)(tyyo第五章第2节波函数的物理意义将t替换为t+t2022-1-30272022-1-3027第五章第2节波函数的物理意义对波动方程的各种形式,应着重从物理意义上去把握。从形式上看呢,它是波形的传播。但是从实质上看它是振动向前的传播。小 结T H A N K S F O R WAT C H I N G