欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    微积分全英微积分全英 (40).pdf

    • 资源ID:67731284       资源大小:2.17MB        全文页数:27页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微积分全英微积分全英 (40).pdf

    12.5 Directional Derivatives and GradientsProblem IntroductionQ1:How to define directional derivative?Q2:Whats the connection with gradient?DefinitionIf the limit exists,y P x xyOPthen the limit value is called the directional derivative of +0()()(,)(,)limlimPPf Pf Pf xx yyf x y at the point in the direction ,|,PP where 22xy()().Definition y P x xyOP+0(,)(,)limff xx yyf x yl Denote it flRemark.The directional derivative is the rate of change of the function along the direction of half line.Theorem where angle between the direction and the positive laxis.x angle between the direction and the positive laxis.ycoscosffflxy,Let be differentiable at .Then has a directional derivative at in the any given direction ,(,)zf x y(,)P x y(,)P x y(,)zf x yProof of the theorem ),(),(yxfyyxxf)(oyyfxxf cos cos ),(),(yxfyyxxf )(oyyfxxf Proof:Since is differentiabler,the increment can be representedDivide both sides by at the same time,we get differentiable=cos+cos y P x xyOPProof of the theorem y P x xyOPSo,the directional derivative ),(),(lim0yxfyyxxf flcoscos.ffxyNote(1)coscosffflxywhere are the directional cosines of the direction,cos,cos and are the directional angles.,0,partial derivatives of the function and the direction .l(2)Calculating the directional derivative only needs to know the Note(3)Relations The function is differential The function has the directional derivative.Counterexample:(,)=2+2,is an arbitrary direction passing through(0,0),directional derivative exist:(0,0)=lim0+(0+cos,0+cos)(0,0)=lim0+|0=1,But the partial derivative does not exist:(0,0)=lim0(,0)(0,0)=lim0|,So,it is not differentiable.Example 1If =2+2,find the directional derivative of at 0(1,2)in the direction ,where is the the vector from 0 to (2,2+3).=0=(1,3),cos=12,cos=32,Two partials are (1,2)=2,(1,2)=4,so the directional derivative 0=(1,2)cos+(1,2)cos=2 12+4 32=1+2 3.Example 2 If ,find the directional derivative atin the direction ,where is the angle between and Moreover,find these directions such that the directional derivative has(1)maximum value;(2)zero.22(,)fx yxxyy(1,1)Plaxis.xl,sin)2(cos)2()1,1()1,1(xyyx sincos 2 sin()4 sin)1,1(cos)1,1()1,1(yxfflf By the calculation formula of the directional derivative,Example 2(1,1)Plaxis.xl(1)When =4(2)When 3=4 If ,find the directional derivative atin the direction ,where is the angle between and Moreover,find these directions such that the directional derivative has(1)maximum value;(2)zero If ,find the directional derivative atin the direction ,where is the angle between and Moreover,find these directions such that the directional derivative has(1)maximum value;(2)zero.22(,)fx yxxyy(1,1)Plaxis.xl the directional derivative arrives the maximum 2.the directional derivative is equal to zero.2 sin()(1,1)4fl Generalize the calculation formula for the function of three variables.Extension Similarly,if the function is differential at some point,then it has the directional derivative at the point in any direction.(cos,cos,cos)is the directional vector of .lVector form Vector form:=(,),unitvector =(cos,cos),passing through point P,()lim0(+)();If f is differentiable at P,then()=().Connection with the GradientThe calculation formula In what direction does have the maximal directional derivative?(,)zf x y are in the same directions,the maximum valueWhen()and =()=|()|cos(),)=cos+cosmax =|()|.Connection with the GradientConnection with the Gradient=()=|()|cos(),)=cos+cosGradient:()=(),()=()+()(=(,)()is also denoted by grad f(p)or grad|Conclusion(1)is the maximum value of the directional derivative.The module of the gradient The gradient of a function at a certain point is a vector:direction the direction of the maximum directional derivative module the maximum value of the directional derivative.Connection with the GradientConnection with the GradientConclusion(2)The directional derivative is regarded as a functional of direction:When and()are in the same directions,has the maximum|()|;i.e.inthedirection of(),the function is changing most rapidly;When and()are in the opposite directions,has the minimum|()|;When (),=0.Example 3If (1)find the rate of change in the direction from to .(2)find the direction with maximal growth rate at and try to find the maximal growth rate.(,)yzfx yxe(2,0)P1(,2)2Q(2,0)P,53cos ,54cos (2,0)|fl(1)=(,),()=(,)|=(,),()(cos,cos)=(1,2)35,45=1.Example 3If (1)find the rate of change in the direction from to .(2)find the direction with maximal growth rate at and try to find the maximal growth rate.(,)yzfx yxe(2,0)P1(,2)2Q(2,0)P(2)The maximal growth rate is max =|(2,0)|=|1,2|=5.The corresponding direction is 1,2.Note Find second the four partial derivatives of If ,find the directional derivative at in the direction from to .2 yzxe(1,0)PThe differences of the definition between the directional derivative and partial derivative must be positive!1.The directional derivative is the rate of change of the function at certain point in any direction.lNote Find second the four partial derivatives of If ,find the directional derivative at in the direction from to .2 yzxe(1,0)PThe differences of the definition between the directional derivative and partial derivativexyxfyxxfxfx ),(),(lim0yyxfyyxfyfy ),(),(lim0 They are the rate of change of straight lines parallel to the axises ofa function at a certain point.x、y can be positive or negative!2.However,the partial derivatives SummaryThe concept of directional derivativeThe concept of the gradientThe relation between the directional derivative and gradient Questions and AnswersIf ,find the gradient and try to find these point whose gradient are zero.2222332u xyzxy1,1,2,6)24()32(kzjyix kzujyuixuzyxgradu ),(gradSo,.1225)2,1,1(kjigradu gradThe gradient is zero at 03 1(,0)2 2P By the calculation formula of the gradient,Directional Derivatives and Gradients DefinitionCalculation formula That is,coscos(,)cos,cosfffgradf x ylxy Let have the partial derivative at the point ,thenthe vector is called the gradient of at the point .),(yxfz (,)P x y),(yxfz (,)P x yGradient(,)fffgradf x y zijkxyzmodule the maximum value of the directional derivativedirection direction of the maximum directional derivative has first-order continuous partial derivatives in the space area For any point),(zyxfu ,G,),(GzyxP The gradient is also a vector:

    注意事项

    本文(微积分全英微积分全英 (40).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开