欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数据库文化基础 (5).pdf

    • 资源ID:67731366       资源大小:2.91MB        全文页数:20页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数据库文化基础 (5).pdf

    Linear Independence3rdweek/Linear AlgebraObjectives of This Week2The goal is to understandLinear independenceUniqueness of a solution in a linear systemSubspace,basis,and dimensionColumn space and rank 3 Recall the matrix equation of a linear system:Or,a vector equation is written as Recall:Linear System6065551+5.55.06.02+1013=66747811+22+33=Person IDWeightHeightIs_smokingLife-span160kg5.5ftYes(=1)66265kg5.0ftNo(=0)74355kg6.0ftYes(=1)78605.51655.00556.01123=667478x =x =4 The solution exists only when Span 1,2,3.If the solution exists for =,when is it unique?It is unique when 1,2,and 3are linearly independent.Infinitely many solutions exist when 1,2,and 3are linearly dependent.Uniqueness of Solution for =6065551+5.55.06.02+1013=66747811+22+33=5(Practical)Definition:Given a set of vectors v v1,v v,check if v vcan be represented as a linear combination of the previous vectors v v1,v v2,v v1for =1,e.g.,v v Span v v1,v v2,v v1for some =1,?If at least one such v vis found,then v v1,v v is linearly dependent.If no such v vis found,then v v1,v v is linearly independent.Linear Independence6(Formal)Definition:Consider 1v v1+2v v2+v v=.Obviously,one solution is =12=000,which we call a trivial solution.v v1,v vare linearly independent if this is the only solution.v v1,v vare linearly dependent if this system also has other nontrivial solutions,e.g.,at least one being nonzero.Linear Independence7 If v v1,v vare linearly dependent,consider a nontrivial solution.In the solution,lets denote as the last index such that 0.Then,one can write=11 11,and safely divide it by,resulting in v v=1v v1 1v v1 Span v v1,v v2,v v1which means can be represented as a linear combination of the previous vectors.Two Definitions are Equivalent8 Given two vectors 1and 2,Suppose Span 1,2 is the plane on the right.When is the third vector 3linearly dependent of 1and 2?That is,v v3 Span v v1,v v2?Geometric Understanding of Linear Dependencev v22v v23v v2v v12v v1x x=2v v1+3v v29 A linearly dependent vector does not increase Span!If v v3 Span v v1,v v2,then Span 1,2=Span 1,2,3,Why?Suppose 3=1v v1+2v v2,then the linear combination of 1,2,3can be written as 1v v1+2v v2+3v v3=1+1v v1+1+1v v2which is also a linear combination of v v1,v v2.Linear Dependence10 Also,a linearly dependent set produces multiple possible linear combinations of a given vector.Given a vector equation 1v v1+2v v2+3v v3=,supposethe solution is =123=321,i.e.,3v v1+2v v2+1v v3=.Suppose also 3=2v v1+3v v2,a linearly dependent case.Then,3v v1+2v v2+1v v3=3v v1+2v v2+2v v1+3v v2=5v v1+5v v2,so =123=550is another solution.Many more solutions exist.Linear Dependence and Linear System Solution11 Actually,many more solutions exist.e.g.,3v v1+2v v2+1v v3=3v v1+2v v2+2v v3 1v v3=3v v1+2v v2+2 2v v1+3v v2 1v v3=7v v1+8v v2 1v v3,thus =123=781is another solution.Linear Dependence and Linear System Solution12 The solution exists only when Span 1,2,3.If the solution exists for =,when is it unique?It is unique when 1,2,and 3are linearly independent.Infinitely many solutions exist when 1,2,and 3are linearly dependent.Uniqueness of Solution for =6065551+5.55.06.02+1013=66747811+22+33=13 Definition:A subspace is defined as a subset of closed under linear combination:For any two vectors,1,2,and any two scalars and,1+2.Span v v1,v v is always a subspace.Why?1=1v v1+v v,2=1v v1+v v 1+2=1v v1+v v+1v v1+v v=1+1v v1+v v In fact,a subspace is always represented as Span v v1,v v.Span and Subspace14 Definition:A basis of a subspace is a set of vectors that satisfies both of the following:Fully spans the given subspace Linearly independent(i.e.,no redundancy)In the previous example,where =Span 1,2,3,Span 1,2 forms a plane,but 3=2v v1+3v v2 Span 1,2,1,2 is a basis of,but not 1,2,3 nor 1 is a basis.Basis of a Subspace15 Consider a subspace (green plane).Is a basis unique?That is,is there any other set of linearly independent vectors that span the same subspace?Non-Uniqueness of Basisv v22v v23v v2v v12v v1x x=2v v1+3v v216 What is then unique,given a particular subspace?Even though different bases exist for,the number of vectors in any basis for will be unique.We call this number as the dimension of,denoted as dim.In the previous example,the dimension of the plane is 2,meaning any basis for this subspace contains exactly two vectors.Dimension of Subspace17 Definition:The column space of a matrix is the subspace spanned by the columns of.We call the column space of as Col.A=111001Col =Span 110,101 What is dim Col?Column Space of Matrix Given A=112101011,note that 211=110+101,i.e.,the third column is a linear combination of the first two.What is dim Col?Col =Span 110,101,211Col =Span 110,10118Matrix with Linearly Dependent Columns19 Definition:The rank of a matrix,denoted by rank,is the dimension of the column space of i.e.,rank =dim Col Rank of MatrixLinear independence Uniqueness of a solution of a linear systemSubspace,basis,and dimension,column space,and rankSummary

    注意事项

    本文(数据库文化基础 (5).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开