欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    微积分全英微积分全英 (1).pdf

    • 资源ID:67731505       资源大小:662.14KB        全文页数:20页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微积分全英微积分全英 (1).pdf

    9.1 Infinite SequencesProblem IntroductionThe area of circleGeometrical MeaningRArea of the 6-th1AArea of the 12-th2AArea of the -th162nnA,321nAAAASProblem IntroductionThe area of circleGeometrical Meaning12nDefinition of the Infinite SequenceDefinition:Infinite sequence1x2x3x4xnxA function whose domain is the set of positive integers and whose range is a set of real numbers.Explicit formula:Recursion formula:Eg:32,1nannEg:111,3,2nnaaanDefinition of the Infinite Sequence2,4,8,16,.2 31,.3 51,1,1,1,.21nn 1.nnn1 4+(1)2,2 3(1)n 2 n1(1)nnn 1234Definition of Infinite Sequencex1a2a2Na1Na3a2LLL|nnNaLIf for each positive number there is a corresponding positive number N such that(6)A sequence that fails to converge to any finite number is said to diverge,or to be divergent.Remark 2:For some fixed point ,written in some forms:x0 x0The sequence is said to converge to,and we write nalimnnaLExample 1Show that if is a positive integer,then 1lim0.pnn110ppnnAnalysis:1 .()pNn1 pnExample 1Show that if is a positive integer,then 1lim0.pnnLet an arbitrary 0 be given.Choose to be any number greater than 1.Then implies thatnaL10pn1=pn1pN11ppAnalysis:Show that if is a positive integer,then 1lim0.pnnTheorem A:Properties of Limits of SequencesLet and be convergent sequences and k be a constant.Then(i)(ii)(iii)(iv)(v)lim;nkklimlim;nnnnkakalimlimlim;nnnnnnnabablimlimlim;nnnnnnnabablimlim,provided that lim0.limnnnnnnnnnaabbbnanbExample 2Dose the sequence converge and,if so,to what number?Use the following almost obvious fact:If,then.limlimxnf xLf nLBy Hospitals Rule,lnlimxxxe1limxxxe=0Thus,So,lnconverges to 0.lnlim0nnnelnnneTheorem B:Squeeze TheoremSuppose that and both converge to L and that for (is a fixed integer).Then also converges to L.110,s.t.,(1)nnNnNaLLaL 22 ,s.t.,(2)nnNnNcLLcL12By ,Take max,nnnabcNN N so ,nnnbnN LacLwe have,namely,lim.nnnnbLbbLLProof:nancnbnnnabcnKKExample 3Show that ForSince lim10nnThe result follows by the Squeeze Theorem.3sinlim0.nnnlim 10nnand 31(sin,.1)1nnnnn Theorem CIfthen lim0,nnalim0.nna00nnnaaaExample 4Show that if then(1)If ,the result is trivial,so suppose otherwise.11limlim 10.nnnpnpBy the Binomial Formula,1nr1+nppnThus,10.nrpnlim0.nnr(2)Then ,1(positive terms)pn Since,and so for some positive number .11r 0r 1|1r 1|1rp 0p Example 4By the Squeeze Theorem,lim0.nnrlim0lim0.nnnnrrBy Theorem C,Show that if thenlim0.nnr11r Theorem D:Monotonic Sequence TheoremIf U is an upper bound for a non-decreasing sequence ,then the sequence converges to a limit A that is less than or equal to U.If L is a lower bound for a non-increasing sequence ,then the sequence converges to a limit B that is greater than or equal to L.12naaaU12nLbbbnab nSummaryDefinition of Infinite SequenceProperties of Limits of SequencesSqueeze TheoremTheorem CPay attention to grasp and consolidate the definition,the calculation,and the skilling in the application of theorems.Monotonic Sequence TheoremQuestions and Answers1Prove s1()is convergent with limit s12nnn 12nfor all n sufficiently large.11ln()ln2ln22ln2lnlnnnnn 1|1|,2nns Hence for any we need to show that0Questions and Answers1Proof s1()is convergent with limit s12 nnnso for any ,let,when ,0lnln2N nN1|1|.2nns we can getInfinite Sequences

    注意事项

    本文(微积分全英微积分全英 (1).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开