欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计算物理ComputationalPhysics计算物理 (8).pdf

    • 资源ID:67731675       资源大小:1.12MB        全文页数:23页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计算物理ComputationalPhysics计算物理 (8).pdf

    Computational physiCsMolecular dynamics simulations General behavior of a classical system The Verlet algorithm Structure of atomic clustersMany-body systemsatomclusterprotein moleculea drop of waterSun-Earth-Moongalaxy In quantum mechanics:Hydrogen atom:one electron and one proton Analytical solutions for eigen-energies and eigen-wavefunctions.Helium atom:two electrons and a nucleus No exact analytical solution.A system of a large number of interacting objects is the so-called many-body system.Too many?Statistical mechanics!Many-body systemsGeneral behavior of a classical system The molecular dynamics solves the dynamics of a classical many-body system described by the Hamiltonian.EK:kinetic energy;EP:potential energymi,ri,and pi are the mass,position vector,and momentum of the ith particleV(ri j)and U(ri)are the corresponding interaction energy and external potential energy From Hamiltons principle,the position vector and momentum satisfy for the ith particle in the system.To simplify the notation,R:all the coordinates(r1,r2,.,rN)G:all the accelerations(f1/m1,f2/m2,.,fN/mN).Rewrite Newtons equations:We can also apply the three-point formula to the velocity The Verlet algorithm for a classical many-body system is:with t=kt.The Verlet algorithm can be started if the first two positions R0 and R1 of the particles are given.If only the initial position R0 and initial velocity V0 are given,we need to figure out R1 before we can start the recursion.A common practice is to treat the force during the first time interval 0,t as a constant,and then to apply the kinematic equation to obtain where G0 is the acceleration vector evaluated at the initial configuration R0.The position R1 can be improved by carrying out the Taylor expansion to higher-order terms if the accuracy in the first two points is critical.We can also replace G0 with the average(G0+G1)/2,with G1 evaluated at R1.This procedure can be iterated several times before starting the algorithm for the velocity V1 and the next position R2.Halleys cometEdmond Halley1656-1742Predicted the re-appearance of comet in 1758.Observed in Dec.25,1758前613年,春秋“秋七月,有星孛入于北斗”。前240年,史记始皇本纪“始皇七年,彗星先出东方,见北方;五月见西方,十六日”1910-1986-2061 The gravitational potential:where r is the distance between the comet and the Sun,M and m are the masses of the Sun and comet,respectively.G is the gravitational constant.Henry Cavendish1731-1810 Using the center-of-mass coordinate system for the two-body system,the dynamics of the comet is governed by:with the reduced mass:We can take the farthest point(aphelion)as the starting point,and then we can easily obtain the comets whole orbit with the Verlet algorithm.Two conservations:the total energy and the angular momentum.The motion of the comet in the xy plane:x0=rmax=5.28x1012 m,vx0=0 y0=0,vy0=vmin=9.13x102 m/s.Let us apply the Verlet algorithm to this problem.where the time-step index is given in parentheses as superscripts.Then we have The acceleration components are given by with r2=x2+y2 and k=GM.We can use more specific units in the numerical calculations,for example,76 years as the time unit and the semimajor axis of the orbital a=2.68x1012 m as the length unit.Then we have rmax=1.97,vmin=0.816,and k=39.5.Code example 7.1.Halley.cpp To determine the structure and dynamics of a cluster consisting N atoms that interact with each other through the Lennard-Jones potential where r is the distance between the two atoms,and e and s are the system dependent parameters.Structure of atomic clusters The force exerted on the ith atom is:The Verlet algorithm:We can then simulate the structure and dynamics of the cluster starting from a given initial position and velocity for each particle.N bodies=N x 1 body?Philip Warren Anderson(1923-2020)Nobel Prize in Physics(1977)Phase transition-from solid to liquidTotal energy:Average kinetic energy:=3/2NkBTFor each simulation,we can calculate the (thus temperature).We can tune the temperature to see what will happen.Examples-animations Solid-Liquid-Gas Growth of a cluster Growth dynamics at the droplet-nanowire interface A powerful toolLAMMPS:Large-scale Atomic/Molecular Massively Parallel Simulatorby Sandia National Labortories,USAhttp:/lammps.sandia.gov/Free software,distributed under the terms of the GNU General Public License.Homework Use the molecular dynamics simulation to simulate the one-dimensional lattice vibration and analyze its spectrum.

    注意事项

    本文(计算物理ComputationalPhysics计算物理 (8).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开