欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    FoundationsofLogic (5).pdf

    • 资源ID:67731981       资源大小:1.25MB        全文页数:21页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    FoundationsofLogic (5).pdf

    The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaOnline Course:Foundations of LogicTsinghua University,spring 2020Dag Westerst ahlTsinghua LogicThe completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaThis is Chapter 4We have two notions of consequence:|=iffevery interpretation making all sentences in true also makes true.H iffthere is a derivation in H of from.These are conceptually very different!One talks about the existence of a finite syntactic object(aderivation),the other quantifies over all interpretations.In Propositional Logic(PL)the difference is not so great:interpretations are valuations,and for every sentence onlyfinitely many different valuations are relevant.(Why?)But in FOL the difference is huge.(Why?)1 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaSoundness and completenessAn inference system S is sound ifI S implies|=and it is complete ifI|=implies SSoundness is(usually)easy:Show that the axioms(if any)arelogically true,and that the rules preserve truth.This is easy to check for H(or ND);you can find the proof(by induction)in Chapter 4.1.The hard part is completeness.2 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaCompleteness for PLToday we consider the completeness of the system H for PL.We must show that if is true in every valuation in which(all sentences in)is truethenthere is a derivation of in H from.That doesnt seem obvious.Actually there are fairly simple ways of showing completeness for PL(this was first done in 191820 by Paul Bernays and(independently)Emil Post);see Exercise 4.7.11.We will use another technique,because it generalizes almost directlyto FOL.3 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaA reformulation of the problemRecall that a set of sentences is satisfiable if there is aninterpretation making(all sentences in)true,and that(1)|=iff is unsatisfiable.We say that is consistent if 6 (where is some PL-sentencesuch that H,such as(p0 p0).We have:(2)H iff is inconsistent.4 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaThe Consistency LemmaThis means that to show completeness,it is enough to showLemma(Consistency Lemma)If is consistent,then is satisfiable.For then:So we focus on proving the Consistency Lemma.5 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaThe Consistency LemmaSo suppose is consistent.How can we find a valuation V makingall sentences in true?Idea 1:Let tell us the truth value of every sentence letter p:IIf p ,let V(p)=1;otherwise V(p)=0.So if p ,then p 6 (since is consistent),so V(p)=0,which is good!But there is a problem:may not contain enoughinformation.Example:suppose p but p 6.Example:suppose p q and p ,but q 6.Solution:Add the missing sentences to!But how do we know which sentences are missing,and how can weadd them systematically?6 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaMaximal consistent setsIdea 2:Extend to a maximal consistent set.Definition(maximal consistency)is maximal consistent if it is consistent,and no further sentencecan be added to it without breaking consistency.I.e.if 6,then is inconsistent.Are there such sets?Yes:for every valuation V,the set:V|=is maximal consistent.(Why?)But that doesnt help us now.(Why?)7 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaMaximal consistent setsFirst we check that maximal consistent sets solve our problem.This is because they have the following nice properties:Fact(properties of a maximal consistent set)(a)iff 6.(b)If H,then .(c)iff 6 or .Roughly:no sentence is missing,so we can use a maximalconsistent set to create our valuation.8 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaProperties of maximal consistent sets(a)iff 6.(b)If H,then .(c)iff 6 or .Proof:9 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaThe interpretation and the Truth LemmaNow suppose is maximal consistent.Define the valuation VbyV(p)=?1if p 0if p 6(i.e.if p )Lemma(Truth Lemma)V|=iff 10 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaProof of the Truth LemmaAssume is maximal consistent.Lemma(Truth Lemma)V|=iff Proof.We use induction over PL-formulas.11 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaLindenbaums LemmaThe Truth Lemma shows that if we start with a maximalconsistent set,Vis a valuation making every sentence in true,so is satisfiable,as we wanted to show.But our assumption was only that is consistent.The final step is provided by the next fact.Lemma(Lindenbaums Lemma)Every consistent set of sentences can be extended to a maximalconsistent set(by adding more sentences).If we can show this,we are done.(Why?)12 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaProof ideaThe idea for proving Lindenbaums Lemma is simple:Suppose is consistent.We go through every sentence in ourlanguage(relative to given vocabulary),one by one in someorder,and add it if it is consistent to do so,otherwise not.Can we enumerate all PL-sentences?A sentence is just a finite string of symbols.There are at most countably many symbols,(,),p0,p1,p2,.and therefore countably many finite strings of symbols.13 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaEnumerating all sentences 1This is a general fact.Suppose our symbols are enumerated ass0,s1,s2,.We enumerate all pairs of symbols as follows:14 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaEnumerating all sentences 2Similarly we can enumerate all triples,quadruples,.of symbols,write them in a table,and then by the same method enumerate allfinite strings of symbols:Most of these strings of symbols are meaningless,but if wesuccessively delete these,we are left with an enumeration of allPL-sentences.(See also Appendix Ch.16.4.)15 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaBack to the proof of Lindenbaums LemmaSo let0,1,2,.be an enumeration of all PL-sentences.We start with our consistentset,and define a sequence of sets 0,1,2,.as follows:16 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaProof of Lindenbaums Lemma,cont.17 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums LemmaNext Thursday:Chapter 518 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums Lemma19 of 20The completeness problemReformulationMaximal consistent setsTruth LemmaLindenbaums Lemma20 of 20

    注意事项

    本文(FoundationsofLogic (5).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开