数字电子技术实验 (23).pdf
数字 电子全加器技 术 实验目录全加器4位二进制全加器原理4位二进制全加器功能概览010504020306全加器设计组合逻辑电路流程二进制转换BCD码电路设计过程Quartus II中的电路实际电路验证全加器全加器能将加数、被加数、以及低位进位信号相加,并根据求和结果给出该位的进位信号。74LS283 4位二进制全加器原理1F2F3F4F4C0C+1B2B3B4B1A2A3A4A8 4 2 116 8 4 2 1低位进位信号74LS283 4位二进制全加器电路C0C0VCCR19GNDS5B1B2B3B4A1A2A3A4B1B2B3B4VCCR4 R3 R2 R1GNDS2A1A2A3A4VCCR17 R16 R15 R11GNDS1U27C05A16B13A22B214A315B312A411B49C41SUM_24SUM_113SUM_310SUM_4U11304A+B+C0=F1+3+0=400100全加器设计组合逻辑电路-以4位自然二进制转换BCD码电路为例实际问题码制转换确定被加数、加数被加数=二进制码和=BCD码加数=待设计X=4 3 2=4(3+2)确定变量输入:4位输出:5位(考虑进位)加法问题真值表值差号序和被加数610101111115600101011114611001101113601001001112610001110111600001010110010010100190000100001801110011107001100011060101001010500010000104011000110030010000100201000010001000000000000F1F2F3F4F1A2A3A4A确定差值/规律差值:6规律:被加数10时,加6电路图仿真验证1PR161PR141PR131PR121PR111PR100PR91PR81PR70PR60PR50PR41PR30PR21PR10PR541PR531PR521PR51U5U4321U3AX321U2AA2A3A4X74LS283GNDA1A2A3A4VCCR17 R16 R15 R11GNDS1B1B2B3B4A1A2A3A47C05A16B13A22B214A315B312A411B49C41SUM_24SUM_113SUM_310SUM_4U1加法控制信号表达式4位自然二进制转换BCD码电路设计要求4位自然二进制码从00001111,代表十进制数015BCD码用4位二进制表示1位十进制数,编码从00001001设计自然二进制转换BCD码的电路十位的BCD码可只留1位数据,个位的BCD码保留4位数据如:4位自然二级制码0111,表示为BCD码 0 01114位自然二级制码1110,表示为BCD码 1 0100真值表分析值差号序和(BCD码)被加数(二进制码)610101111115600101011114611001101113601001001112610001110111600001010110010010100190000100001801110011107001100011060101001010500010000104011000110030010000100201000010001000000000000F1F2F3F4F1A2A3A4A输入09时,自然二进制码与BCD码相同;和与被加数的差值为0输入1015时,自然二进制码与BCD码不同;但和与被加数的差值恒为64位输入为特定组合时(10),加数=6其余情况,加数=0问题简化成:4输入1输出SSI组合逻辑电路设计问题信号X加6控制被加数(二进制码)111111011111011100111110110101010010000101110001100101000010011000010001000000001A2A3A4A加法控制信号分析使用卡诺图或公式化简方法,得到X=4 3 2=4(3+2)1PR161PR141PR131PR121PR11321U3AX321U2AA2A3A4仿真验证电路1PR161PR141PR131PR121PR111PR100PR91PR81PR70PR60PR50PR41PR30PR21PR10PR541PR531PR521PR51U5U4321U3AX321U2AA2A3A4X74LS283GNDA1A2A3A4VCCR17 R16 R15 R11GNDS1B1B2B3B4A1A2A3A47C05A16B13A22B214A315B312A411B49C41SUM_24SUM_113SUM_310SUM_4U1二进制转换BCD码-Quartus II电路二进制转换BCD码-Quartus II完整电路码制转换电路动态数码管驱动电路输出数据传输关系感谢观看THANKS FOR WATCHING!