(5.2)--5.2-CutsansStrongCutsPart2.pdf
5.2 5.2 Cuts and Strong Cuts:Part 2Cuts and Strong Cuts:Part 2 Let Let,.=,=.,.Theorem Theorem 1 1 Let Let,.Then.Then ()=,()=,()=,()=.Corollary 1Corollary 1 Let Let,.Then.Then (=)=()=,(=)=()=,(=)=(),=(=)=()=.Theorem Theorem 2 2 Let Let be an identifier setbe an identifier set,.ThenThen ()=(),()=(),()(),()().Prove that Prove that()().,()(),()()|()().Theorem Theorem 3 3 Let Let ,be an be an identifier identifier set,set,.If If =,then,then=.If If =,then,then =.Prove that if Prove that if =,then,then=.Proof Proof =,.Corollary 2 Corollary 2 LetLet ,.If If ,then then=.HintHint Suppose Suppose ,.=.