数学分析数学分析数学分析 (22).pdf
?1.?yxyxfcossin),(?)1,0(?8?6sin3sin66cos3cos343?8?8?8?8?00(,)(0,0),(,)(,)3 6xyxy?:?yxyxfcossin),(?Taylor?0k?)1,0(?8?3(,)(0,0)43 6ff?=(,)(,)xyfxyxfxyy8888:?:coscossinsin336636?8?8?8?8?2.?Taylor?986223),(2233?yxxyyxyxyxf)2,1(?332(,)3(1)1(2)22(1)1(2)2f x yxyxy?22(1)1(2)2xy?6(1)18(2)29xy?2214 13(1)6(2)5(1)12(1)(2)4(2)xyxxyy?3223)2()2)(1(2)2()1(2)1(3?yyxyxx?1,2uxvy?(,)(1,2)f x yf uv?33223(1)(2)2(1)(2)2(1)(2)6(1)8(2)uvuvuvuv?9?1,2uxvy?3.?Taylor?)1ln(sin),(yxyxf?)0,0(?32333(,)()()623xyyf x yxo xyo y?2221()2xyxyoxy?3?4.?Taylor?yxyxf?e),()0,0(n?nnRyxnyxyxyxf?)(!1)(!21)(1),(2?,1?)(1)()!1(1yxnneyxnR?8?5.?0,cos),(?xxyyxf?1?Taylor?),(yxf)0,1(2R?2?k?Taylor?),(yxf)0,1()0,1(kR?k?0?kR?1?22221)1()1(1),(Ryxxyxf?321(1)(1(1),3!)Rxyfxxyy88-#II?+!II,322432cossincossin(1)(1)(1)263xxyxyyBBB555?B5?)1(1?x85?y8B?10?8?2?njkjjnjnjnknRyxjjnCnyxf01)1)(2cos()!()1(!11),(?101211)1)(2cos(1)!1()1()!1(1kjjjkjkjkjkkyxjjkCkR?B5?1?x1?5?),(?y?0?kR)(?k?31|1|0?x?3432?5?211?5x?),(?y?1012|1|1)!1()!1(!)!1()!1(1|kjjjkjkkyxjkjkjkkR5jjkkjyxj?1101!1155jjkxyjx?011!1115551111?xykex555?0?kR?k6.?Taylor?03.296.8?2(,)(9)yf x yx?(0?Taylor?:,0)222281(,)81 1881ln9(9 18ln9)ln 9(,)2f x yxyxxyyR x y?03.296.8=(0.04,0.03)f?81 18(0.04)9?81ln9 0.032 222+(-0.04)+(9+18ln9)(-0.04)0.03+81/2 ln(9)0.0322222985.74?7?),(yxf2R?1l2l2R?0),(6IIyxlfi?2,1?i?2R?6),(yxf?111(cos,sin)?l222(cos,sin)?),(yxf2R?l?111(,)(,)cos(,)sin0 xyfx yfx yfx yl?I?I6?222(,)(,)cos(,)sin0 xyfx yfx yfx yl?I?I6?1l2l1122cossin0cossin?(,)0 xfx y 6?(,)0yfx y6?12.3.1?6),(yxf?8?xyyxfsin),(?0?x0),(6()$%&II?IIyxfyyxxk?1.k?21(,)coscos0yyyxyf x yxyxyxxx x&)II&)?22?2$II%(%(26,?1k?(,)kxyf x yxy&)II?$II%(1(,)0kxyxyf x yxyxy?&)&)IIII?6$IIII%(%(?3