数学分析数学分析PPT (16).pdf
?x?11sin)1(2nnnxn?),(?x?x2?x3?Fourier?,?Fourier?12001(1)24sinnxxnxtdtntdtn?FF?122111(1)(1)(1)4(cos1)44connnnnntntnn?2snn?16.2.7.(1)?221(1)4co3nnnxn?s?,x?23x?Fourier?3203xxt dt?F22001(1)312cos3nxxndtntdtn?FF?231(1)12sinnnxnxn?2231(1)(6)2sinnnnnxn?(,)x?2?16.3.2?aanxbnnnn012?(cossin x)?Fourier?bnnn?1?()f xaanxbnnnn012?(cossin x)?1F x()?F!#+,-?xcdtatf2)(0?16.3.2?Dini-Lipschitz?Fourier?F x()F x()01()cossin2nnnAbaF xnxnxnn?&)?$%(?,x?0 x?01(0)2nnAbFn?bnnn?1?3?2lnsinnnnx?2lnlnsinnnnx?Fourier?x?1lnn?1lnlnn?1sinnkkx?2lnsinnnnx?2lnlnsinnnnx?2nnbn?21lnnnn?21lnlnnnn?Fourier?4?f x()*?*?,0,00,1xx?112)12sin(221nnxn?Parseval?12121()nn?82?)(xf,?Parseval?2011()1fx dxdx?FF21122(21nn?&)?$?%(?)?12121()nn?21122?&)&)(?$%(%82?25?f x()*?*?0,0?xxxx?12cos1)1(22nnnxn?Parseval?14)12(1nn?)(xf,?Parseval?2222012()3fx dxx dx?FF222142(21)kk?-#?+!?,?14)12(1nn2222324?&)&)?$%(%(496?1222cos)1(43nnnxnx?),(?x?Parseval?141nn?)(xf,?Parseval?2442012()5fx dxx dx?FF22221423nn?&)&)?$%(%(?141nn444221591690?&)?$%(?)(xf),(?2?F?nxdxxfbnsin)(1?F?nxdxxfbnsin)(1?1nnb 3()$%&?11|221|nnnnbb?F?nxdxxfbnsin)(1?1()sin()cosfxnxnfxnxdx?-#?+!,F?()cos()sinnf xnxnf xnxdx?-#?+!,F2nn b?()$%&?()$%&?|121|121|1|2222nnnnbnbnnbnnb?,2,1?n?()$%&?()$%&?()$%&?1121121|221|621|121|nnnnnnnnnbbbnb?)(xf),(?2?Fourier?)(xf0)(6xf?Fourier?Parseval?)(xf0)(2?F?dxxf)(xf0)(6xf?9?)(xf?2?0?1?)(xnA?nkkkkxBkxAA10)sincos(2?1A?F?dxxxfn|)()(|?)(xf?01()cossin2nnnaf xanxb?nx?4?)(xf?2?Parseval?21()fx dx?F22201()2nnnaab?01/?N0nN/?22221()2kkk nab1?()nxA?01(cossin)2nkkkaakxbkx?()nN?16.3.3?21|()()|nf xxdx?A?F22221()2kkk nab1?22|()()|()()|1nnf xxdxf xxdx?AA?2FFdx?F?2212|()()|nf xxdx?A?2?F1?5