欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数据库文化基础 (9).pdf

    • 资源ID:67739638       资源大小:2.70MB        全文页数:17页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数据库文化基础 (9).pdf

    Eigenvalue and Eigenvector5thweek/Linear AlgebraObjectives of This Week2The goal is to understandEigenvectors and eigenvaluesNull spaceCharacteristic equationFinding all eigenvalues and eigenvectors3Eigenvectors and Eigenvalues Definition:An eigenvector of a square matrix is a nonzero vector such that =for some scalar In this case,is called an eigenvalue of,andsuch an is called an eigenvector corresponding to.4Transformation Perspective Consider a linear transformation x x=x x.If x x is an eigenvector,then x x=x x=,which means the output vector has the same direction as x x,but the length is scaled by a factor of.Example:For =2653,an eigenvector is 11since x x=x x=265311=88=811x x=8 8=8115Computational Advantage Which computation is faster between 265311and 811?6Eigenvectors and Eigenvalues The equation =can be re-written as =is an eigenvalue of an matrix if and only if this equation has a nontrivial solution(since should be a nonzero vector).7Eigenvectors and Eigenvalues =The set of all solutions of the above equation is the null space of the matrix ,which we call the eigenspace of corresponding to.The eigenspace consists of the zero vector and all the eigenvectors corresponding to,satisfying the above equation.8Null Space Definition:The null space of a matrix is the set of all solutions of =called a homogeneous linear system.We denote the null space of as Nul.For =12,should satisfy the following:1=0,2=0,=0 That is,should be orthogonal to every row vector in.9Null Space is a Subspace Theorem:The null space of a matrix is a subspace of.In other words,the set of all the solutions of a system =is a subspace of.Note:An eigenspace thus have a set of basis vectorswith a particular dimension.10Example:Eigenvalues and Eigenvectors Example:Show that 8 is an eigenvalue of a matrix =2653and find the corresponding eigenvectors.Solution:The scalar 8 is an eigenvalue of if and only if the equation 8 =has a nontrivial solution:The solution is =11for any nonzero scalar,which is Span11.8 =6655=11Example:Eigenvalues and Eigenvectors In the previous example,3 is also an eigenvalue:+3 =5656=The solution is =15/6for any nonzero scalar,which is Span15/6.12Characteristic Equation How can we find the eigenvalues such as 8 and 3?If =has a nontrivial solution,then the columns of should be noninvertible.If it is invertible,cannot be a nonzero vector since 1 =1 =Thus,we can obtain eigenvalues by solving det =0called a characteristic equation.Also,the solution is not unique,and thus has linearly dependent columns.13Example:Characteristic Equation In the previous example,=2653is originally invertible since det =det2653=6 30=24 0.By solving the characteristic equation,we want to find that makes non-invertible:det =det2 653 =2 3 30=2 5 25=8 3 =0=3 or 814Example:Characteristic Equation Once obtaining eigenvalues,we compute the eigenvectors for each by solving =15Eigenspace Note that the dimension of the eigenspace(corresponding to a particular)can be more than one.In this case,any vector in the eigenspace satisfies x x=x x=33Multiplication by acts as a dilation on the eigenspace16Finding all eigenvalues and eigenvectors In summary,we can find all the possible eigenvalues and eigenvectors,as follows.First,find all the eigenvalue by solving the characteristic equation:det =0 Second,for each eigenvalue,solve for =and obtain the set of basis vectors of the corresponding eigenspace.Eigenvectors and eigenvaluesCharacteristic equationFinding all eigenvalues and eigenvectorsSummary

    注意事项

    本文(数据库文化基础 (9).pdf)为本站会员(奉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开