2016年贵州省高考理科数学试卷.docx
2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是(A) (B)(C)(D)(2)已知集合,则(A)(B)(C)(D)(3)已知向量,且,则m=(A)8 (B)6 (C)6 (D)8(4)圆的圆心到直线 的距离为1,则a=(A) (B) (C) (D)2(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A)24 (B)18 (C)12 (D)9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20 (B)24 (C)28 (D)32(7) 若将函数y=2sin 2x的图像向左平移个单位长度,则评议后图象的对称轴为(A)x= (kZ) (B)x=+ (kZ) (C)x= (kZ) (D)x=+ (kZ)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(A)7 (B)12 (C)17 (D)34(9)若cos()= ,则sin 2=(A) (B) (C) (D)(10)从区间随机抽取2n个数,,构成n个数对,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为(A) (B) (C) (D)(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,M F1与 轴垂直,sin ,则E的离心率为(A) (B) (C) (D)2(12)已知函数学.科网满足,若函数与图像的交点为 则 (A)0 (B)m (C)2m (D)4m第II卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)ABC的内角A、B、C的对边分别为a、b、c,若cos A=,cos C=,a=1,则b= .(14)、是两个平面,m、n是两条直线,有下列四个命题:(1)如果mn,m,n,那么.(2)如果m,n,那么mn.(3)如果,m,那么m. (4)如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 。(16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+2)的切线,则b= 。三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.(I)求;(II)求数列的前1 000项和.18.(本题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345概率0.300.150.200.200.100. 05(I)求一续保人本年度的保费高于基本保费的概率;(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将DEF沿EF折到的位置,.(I)证明:平面ABCD;(II)求二面角的正弦值.20. (本小题满分12分)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MANA.(I)当t=4,时,求AMN的面积;(II)当时,求k的取值范围.(21)(本小题满分12分)(I)讨论函数 的单调性,并证明当 >0时, (II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:集合证明选讲如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F.(I) 证明:B,C,E,F四点共圆;(II)若AB=1,E为DA的中点,求四边形BCGF的面积. (23)(本小题满分10分)选修44:坐标系与参数方程在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25. (I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程是(t为参数),l与C交于A、B两点,AB=,求l的斜率。(24)(本小题满分10分),选修45:不等式选讲已知函数f(x)= x-+x+,M为不等式f(x) 2的解集.(I)求M;(II)证明:当a,bM时,a+b1+ab。