欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学教案-圆的内接四边形.doc

    • 资源ID:68028289       资源大小:13.50KB        全文页数:4页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学教案-圆的内接四边形.doc

    数学教案圆的内接四边形1. 知识结构 2. 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3. 教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以“发现证明应用”为主线,以“特殊一般”的探究方法,引导学生发现与证明的思想方法.一、教学目标 : (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理; (3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力; (2)通过定理的证明探讨过程,促进学生的发散思维; (3)通过定理的应用,进一步提高学生的应用能力和思维能力. (三)情感目标 (1)充分发挥学生的主体作用,激发学生的探究的热情; (2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程 设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做O的内接四边形,而O叫做四边形ABCD的外接圆. (二)创设研究情境 问题:一般的圆内接四边形具有什么性质? 研究:圆的特殊内接四边形(矩形、正方形、等腰梯形) 教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等,对边平行. (2)正方形:对边相等,对边平行,邻边相等. (3)等腰梯形:两腰相等,有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质. 2、角的关系 猜想:圆内接四边形的对角互补. (三)证明猜想 教师引导学生证明.(参看思路) 思路1:在矩形中,外接圆心即为它的对角线的中点,A与B均为平角BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢? A=,C= A+C= 思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢? 这时有2(+)=360° 所以 +=180° 而 +=A,+=C, A+C=180°,可得,圆内接四边形的对角互补. (四)性质及应用 定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角. (对A层学生应知,逆定理成立, 4点共圆) 例 已知:如图,O1与O2相交于A、B两点,经过A的直线与O1交于点C,与O2交于点D.过B的直线与O1交于点E,与O2交于点F. 求证:CEDF. (分析与证明学生自主完成) 说明:连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决. 教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新. 巩固练习:教材P98中1、2. (五)小结 知识:圆内接多边形圆内接四边形圆内接四边形的性质. 思想方法:“特殊一般”研究问题的方法;构造圆内接四边形;一题多解,一题多变. (六)作业 :教材P101中15、16、17题;教材P102中B组5题.探究活动 问题: 已知,点A在O上,A与O相交于B、C两点,点D是A上(不与B、C重合)一点,直线BD与O相交于点E.试问:当点D在A上运动时,能否判定CED的形状?说明理由. 分析 要判定CED的形状,当运动到BD经过A的圆心A时,此时点E与点A重合,可以发现CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中D及CED的大小保持不变,CED的形状保持不变. 提示:分两种情况 (1)当点D在O外时.证明CDECAD即可 (2)当点D在O内时. 利用圆内接四边形外角等于内对角可证明CDECAD即可 说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换; (2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法; (3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,CDE仍然是等腰三角形.推荐阅读:第三单元(四边形)-“四边形”教学设计“第三单元四边形”介绍四边形复习设计四边形第三单元:四边形(重点单元)复习提纲第三单元 四 边 形小学数学教案数学教案高中数学教案模板 第 4 页 /总页数4 页

    注意事项

    本文(数学教案-圆的内接四边形.doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开