人教版高中数学 3.2《立体几何中的向量方法(二)》课件 新人教B选修21.ppt
-
资源ID:68133713
资源大小:486.50KB
全文页数:21页
- 资源格式: PPT
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版高中数学 3.2《立体几何中的向量方法(二)》课件 新人教B选修21.ppt
3.2 3.2 立体几何中的向量方法(一)立体几何中的向量方法(一)2021/8/9 星期一1ala给定一个点给定一个点A和一个和一个向量向量a,过点过点A,以向,以向量量a为法向量的平为法向量的平面是完全确定的。面是完全确定的。2021/8/9 星期一2方法指导:方法指导:怎样求平面法向量?怎样求平面法向量?一般根据平面法向量的定义推导出平面的法向量,进而就可以利用平面的法向量解决相关立体几何问题。推导平面法向量的方法如下:2021/8/9 星期一3设直线设直线l,m的方向向量分别为的方向向量分别为a,b,平面,平面,的法向量分别为的法向量分别为u,v,则则线线平行:线线平行:lm a b a=kb;线面平行:线面平行:l au au=0;面面平行:面面平行:u v u=kv.线线垂直:线线垂直:l m a b ab=0;面面垂直:面面垂直:u v uv=0.线面垂直:线面垂直:l a u a=ku;2021/8/9 星期一4例例1、在棱长为、在棱长为1的正方体的正方体 中,中,求平面求平面 的法向量。的法向量。ABCDxyA1B1C1D1z图12021/8/9 星期一5二、讲授新课二、讲授新课1 1、用空间向量解决立体几何问题的、用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果)把向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为向量问题)(化为向量问题)(进行向量运算)(进行向量运算)(回到图形问题)(回到图形问题)2021/8/9 星期一6 例例1:如图如图1:一个结晶体的形状为四棱柱,其中,:一个结晶体的形状为四棱柱,其中,以顶点以顶点A为端点的三条棱长都相等,且它们彼此的夹为端点的三条棱长都相等,且它们彼此的夹角都是角都是60,那么以这个顶点为端点的晶体的对角线,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?的长与棱长有什么关系?A1B1C1D1ABCD图图1解:解:如图如图1,设,设化为向量问题化为向量问题依据向量的加法法则,依据向量的加法法则,进行向量运算进行向量运算2021/8/9 星期一7所以所以回到图形问题回到图形问题这个晶体的对角线这个晶体的对角线 的长是棱长的的长是棱长的 倍。倍。思考:思考:(1)本题中四棱柱的对角线)本题中四棱柱的对角线BD1的长与棱长的长与棱长有什么关系?有什么关系?A1B1C1D1ABCD分析分析:2021/8/9 星期一8思考:思考:(2 2)如果一个四棱柱的各条棱)如果一个四棱柱的各条棱长长都相等,并且以某一都相等,并且以某一顶顶点点为为端点端点的各棱的各棱间间的的夹夹角都等于角都等于 ,那么有那么有这个四棱柱的对角线的长可以确定这个四棱柱的对角线的长可以确定棱长吗棱长吗?A1B1C1D1ABCD分析分析:这个四棱柱的对角线的长可以确定棱长。这个四棱柱的对角线的长可以确定棱长。2021/8/9 星期一9(3 3)本题的晶体中相对的两个平面之间的距)本题的晶体中相对的两个平面之间的距离是多少?(提示:求两个平行平面的距离,离是多少?(提示:求两个平行平面的距离,通常归结为求两点间的距离)通常归结为求两点间的距离)A1B1C1D1ABCDH 分析:分析:面面距离面面距离回归图形回归图形点面距离点面距离向量的模向量的模解:解:2021/8/9 星期一10 所求的距离是所求的距离是A1B1C1D1ABCDH2021/8/9 星期一11练习练习:如图如图2 2,空间四边形,空间四边形OABCOABC各边以及各边以及ACAC,BOBO的长都是的长都是1 1,点,点D D,E E分别是边分别是边OAOA,BCBC的中点,的中点,连结连结DEDE,计算,计算DEDE的长。的长。OABCDE图图22021/8/9 星期一12 例例2 2:如如图图3 3,甲站在水,甲站在水库库底面上的点底面上的点A A处处,乙站在水,乙站在水坝坝斜面上的点斜面上的点B B处处。从。从A A,B B到直到直线线 (库底与水坝的交线)(库底与水坝的交线)的距离的距离ACAC和和BDBD分别为分别为 和和 ,CD ,CD的长为的长为,AB,AB的长为的长为 。求。求库底与水坝所成二面角的余弦值。库底与水坝所成二面角的余弦值。解:解:如图,如图,化为向量问题化为向量问题根据向量的加法法则根据向量的加法法则进行向量运算进行向量运算ABCD图图32021/8/9 星期一13于是,得于是,得因此因此设向量设向量 与与 的夹角为的夹角为 ,就是库底与水坝所成的就是库底与水坝所成的二面角。二面角。所以所以回到图形问题回到图形问题库底与水坝所成二面角的余弦值为库底与水坝所成二面角的余弦值为2021/8/9 星期一14 例例2 2:如如图图3 3,甲站在水,甲站在水库库底面上的点底面上的点A A处处,乙站在水,乙站在水坝坝斜面上的点斜面上的点B B处处。从。从A A,B B到直到直线线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD ,CD的长为的长为,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二面角的余弦值。思考:思考:(1)本题中如果夹角)本题中如果夹角 可以测出,而可以测出,而AB未知,未知,其他条件不变,可以计算出其他条件不变,可以计算出AB的长吗?的长吗?ABCD图图3分析:分析:可算出可算出 AB 的长。的长。2021/8/9 星期一15 (2)如果已知一个四棱柱的各棱长和一条)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦夹角都相等,那么可以确定各棱之间夹角的余弦值吗?值吗?分析:分析:如图,设以顶点如图,设以顶点 为端点的对角线为端点的对角线长为长为 ,三条棱长分别为,三条棱长分别为 各棱间夹角为各棱间夹角为 。A1B1C1D1ABCD2021/8/9 星期一16 (3)如果已知一个四棱柱的各棱长都等于)如果已知一个四棱柱的各棱长都等于 ,并且以某一顶,并且以某一顶点为端点的各棱间的夹角都等于点为端点的各棱间的夹角都等于 ,那么可以确定这个四棱柱相邻,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?两个夹角的余弦值吗?A1B1C1D1ABCD分析:分析:二面角二面角平面角平面角向量的夹角向量的夹角回归图形回归图形 解:解:如图,在平面如图,在平面 AB1 内过内过 A1 作作 A1EAB 于点于点 E,EF在平面在平面 AC 内作内作 CFAB 于于 F。可以确定这个四棱柱相邻两个夹角的余弦值。可以确定这个四棱柱相邻两个夹角的余弦值。2021/8/9 星期一17练习:练习:(1 1)如图)如图4 4,6060的二面角的二面角的棱上有的棱上有A A、B B两点,直线两点,直线ACAC、BDBD分别在这个二面角的两个半平面分别在这个二面角的两个半平面内,且都垂直内,且都垂直ABAB,已知,已知ABAB4 4,ACAC6 6,BDBD8 8,求,求CDCD的长。的长。B图图4ACD2021/8/9 星期一18 (2)三棱柱)三棱柱ABC-A1B1C1中,底面是边长中,底面是边长为为2的正三角形,的正三角形,A1AB45,A1AC60,求二面角,求二面角B-A A1-C的平面角的余弦值。的平面角的余弦值。ABCA1B1C1图图52021/8/9 星期一19 如图如图6,在棱长为,在棱长为 的正方体的正方体 中,中,分别是棱分别是棱 上的动点,且上的动点,且 。(1)求证:)求证:;(2)当三棱锥)当三棱锥 的体积取最大值时,求二的体积取最大值时,求二面角面角 的正切值。的正切值。OCBAOAB CEF图图6思考:2021/8/9 星期一20小结:小结:用空间向量解决立体几何问题的用空间向量解决立体几何问题的“三步曲三步曲”。作业:作业:课本课本P121 第第 2、6 题题面面距离面面距离回归图形回归图形点面距离点面距离向量的模向量的模二面角二面角平面角平面角向量的夹角向量的夹角回归图形回归图形2021/8/9 星期一21