台车设计方案(16页).doc
-第 1 页台车设计方案台车设计方案-第 2 页目目录录一、设计概况.1二、设计资料.1三、台车结构设计.8四、机械传动结构设计.11五、液压传动机械设计.13-第 1 页古交兴能电厂至太原供热主管线及中继能源站工程古交兴能电厂至太原供热主管线及中继能源站工程隧道主体工程第三标段衬砌台车设计方案隧道主体工程第三标段衬砌台车设计方案一、设计概况一、设计概况衬砌台车的制作和安装需执行 隧道衬砌模板台车设计制造标准规范、混凝土结构工程施工及验收规范(GB50204-92)、公路隧道设计规范(JTJ042-99)中的相关要求。衬砌台车设计成边墙顶拱整体浇筑的自行式台车形式;最下部横梁距离底板地面净高不低于 4.47m,满足施工设备通行要求。衬砌台车的结构设计要确保在重复使用过程中结构稳定,刚度满足要求。模板最大变形值不超过 3mm。衬砌台车设计长度为 12m 台车。衬砌台车设计时,承载混凝土厚度按 0.8m 设计校核(标准衬砌厚度一般位置为 0.4m,超厚段 1.5 厚米另加支撑满足施工要求)。衬砌台车面板伸缩系统采用液压传力杆,台车就位后采用丝杆承载。侧模和顶模两侧设置窗口,以便进人和泵管下料。衬砌台车两端及其它操作位置需设置操作平台和行人通道,平台和通道均应满足安全要求。二、设计资料二、设计资料1、衬砌台车设计控制尺寸衬砌台车外形控制尺寸,依据隧道设计断面图、施工技术要求确定。见总图正视图。2、设计衬砌厚度该隧道一般位置衬砌厚度 0.4m,衬砌台车设-第 2 页计时,承载混凝土厚度按0.8m 设计校核。(超挖至 1.5 米另加辅助设施)3、衬砌台车下通行控制尺寸横梁距离地面高度不低于 4.2m。A)台车轨距台车轨距设计为 7m。B)洞内零星材料起吊重量起吊重量一般不超过 2 吨。C)浇筑段长度每循环浇筑段长 12m。4、衬砌台车设计方案衬砌台车的设计如图所示,见正视图。该台车特点:采用全液压立收模;电机驱动行走;横向调节位移也采用液压油缸。结构合理,效果良好。5、钢模板设计控制数据(1)、模板:控制数据(见下表)(2)、台车结构台车立柱横向中心距为 7m,净空高 4.47m、宽10960m。(3)、台车机械设备控制数据(见下表)项目所对中心角外沿弧长(mm)模板面积()每节钢模宽度(m)顶拱模板107.810307123.681.5(每一段浇筑采用8节钢模板)边拱模板54.15180*262.16*2-第 3 页6、钢模板设计钢模板的作用是保持隧道衬砌混凝土浇筑的外形及承担混凝土浇筑载荷。钢模板主要由面板、弧形板、支撑角钢、立筋板、活动铰构成。(1)设计假定:面板弧形板按照双铰耳设计,最大正负弯矩区采用加强措施;面板按四边支撑计算。(2)荷载及其组合:顶拱钢模面板的计算荷载包括设计衬砌混凝土浇筑荷载、允许超挖及局部过大超挖部分的混凝土浇筑荷载和面板的自重等。q=q0+q1+q2+q3式中 q面板计算载荷,kgf/m2q0面板自重,按照初选面板厚度计算;项目单位设计控制数据升降油缸行程油缸外伸最大长度轴向承压力tf30085060边模油缸行程油缸外伸最大长度轴向承压力轴向承拉力tftf30011101320行走机构轨距轮压驱动力tftf700020400-第 4 页q1设计衬砌混凝土荷载,q1=h钢筋混凝土容重,可采用 2600kgf/m3h设计台车衬砌厚度取 1.2m;q2允许超挖部分的混凝土载荷,其值为 2080kgf/m2(取 0.8m)q3局部过大超挖部分回填的混凝土荷载(不包括允许超挖部分),为 0.8m。q4与 q3相同,仅加载部位有异;q5混凝土侧压力。q5=R,+CR,采用 0.75m;C混凝土入仓对模板的冲击力,设计中采用 0.2tf/m2。荷载荷载组合q0=262设计衬砌混凝土 q1=960允许超挖部分回填q2=500局部过大超挖回填q3=1250同 q3,加载部位有异q4=1250混凝土侧压力q5=1400面板q1+q2+q3=2710弧形板设计情况 I(顶拱浇筑完时)q0+q1+q2=1722设计情况 II(侧墙浇筑到顶拱时)q5=1400校核情况 I(中间 1/4 跨有局部超挖时)q0+q1+q2+q4=2972校核情况 II(半跨有局部超挖时)q0+q1+q2+q3=2972-第 5 页(3)台车面板设计1)面板支撑情况:四边支撑板:a=26,b=75;2)面板厚度确定见下表:钢模板面板采用 12mm 厚的钢板。(4)、弧板及内部支撑设计:弧板采用 A314 钢板,宽度 300mm,加强筋采用钢板及 10#的槽钢,中心间距 280mm。1)内力计算:参照双铰等截面直墙圆拱钢架梁内力公式计算。计算结果见下表(该表内力均以 1m 计)载荷作用支座反力各种计算情况时钢拱梁各截面的组合内力(度)02076.8106q=q0+q1+q2=1722kgf/mV=29.345设计情况IM-22.623-16.52724.81414.976H=2.021N 26.98923.6932.6064.281Q 0-8.624-2.62211.76q5=1400kgf/mV=0设计情况IIM 23.12616.953-28.314-28.105H=12.37N 2.0225.33328.10527.549Q 08.748.6279.996支撑情况a/b按强度验算求按挠度验算求系数Mmax(kgfm)(cm)系数(cm)a1a2四边支撑0.170.0047 0.003 68.7840.50 0.00082 0.69-第 6 页q3=1250kgf/mV=6.745校核情况IM 20.23916-20.431-15.619H=0.288N 1.7694.60727.6423.548Q-1.5837.4843.078-15.639q4=1250gf/mV=2.087校核情况IIM 21.82915.588-20.42313.109H=0.1066N 1.5914.72623.21921.655Q 08.322.479-9.5752)弧板及内部支撑截面选择(参照相关公式)。(见下表)M=q,l2/8=M/WXfmax=5q,l4/384EIXl/250q,作用在支撑角钢上的线载荷,q,=qa=2.25(t/m)l支撑角钢的计算跨度 1.5m;a支撑角钢间距,为 260mm;WX、IX分别为对 x 轴的截面抵抗矩及截面惯性矩,计算截面包括支撑角钢每侧宽 15的面板面积;梁单元的最大变形量,即模板的最大位移:fmax=5*2.25*104*1.54/(384*2.1*1011*3.02*10-6)=0.0023m=2.3mm通过上述的分析计算可知,整个模板的强度刚度是足够的。下面的内力也满足要求。-第 7 页3)弧板及内部支撑(=90)截面处变形计算(参照相关公式)。选择的截面计算截面内力(kgf.cmkgf)截面应力(kgf.cm2)与比较基本截面Ix=7834cm4Wx1=804Wx2=485cm3设计情况I=20M=71022N=23521041(外)1632(内)=1700设计情况IIM=720010N=2836.81392(外)1658(内)最大正负弯矩截面Ix=11099cm4Wx1=850Wx2=745cm3设计情况I=0M=1019836N=8921321(外)1499(内)校核情况IM=1117194N=7381448(外)1655(内)设计情况II=90M=-1049011N=129411169(外)1669(内)校核情况IIM=-1027567N=169281169(外)1673(内)-第 8 页(见下表)4)、活动铰耳设计:顶部模板活动铰耳在截面 76.8。从内力计算表中可知活动铰耳一般都在正弯矩区,仅设计区 II 处于负弯矩区,而绝对值较正弯矩区小,所以活动铰耳设计采用该截面之最大内力进行。活动铰耳承担该截面的剪力及由弯矩所产生的剪力,弧板与弧板之间用螺栓连接,螺栓主要承受剪力根据相关公式计算所得:M=105162kgf.cmN=7680kgfQ=7405kgf三、台车结构设计三、台车结构设计1、台车主架体设计台车主架体结构按照等截面双铰多层钢架进行内力计算。根据运输条件、吊装力量和方便加工制造等因素,将主架体分为:底梁、立柱、门架横梁、门架斜支撑、门架纵梁、横梁直支撑、横梁直支撑斜拉杆、立柱斜拉杆等。按近似的框架结构简支梁进行计算。(参照台车正视图)P1=K1/nG受力情况KPKP/LKP/L比较设计情况 I2.11/7151/4001/400设计情况II-1.51/10001/400校核情况II 2.51/6001/400(未考虑侧向混凝土抗力)项目计算所需要的直径(mm)选用截面直径(mm)螺栓d12.420模板销子d2538-第 9 页式中K1-不同步工作系数,可采用 K1=2;n-每部台车上布置的垂直升降机械总数;G-钢模板、台车拖架以及钢模伸缩之附加载荷之和,kgf,G=G0+G1+P1G1-拖架估算重,kgf;G0-钢模板估算重,kgf;GO=gFn1g-钢模板单位面积钢材重,kgf/m2;F-每节钢模板的表面积,m2;n1-台车每次托运的钢模节数;P1附加垂直载荷;垂直升降机械所承担的拉力P2=(fF1-gF)*K1/n其中F1-每节钢模板顶模部分的表面积;f-单位粘结力取 f=500Kgf/m2一个水平支撑机械所传成的力P3=K1aG2/bn1其中 b-水平支撑机械轴线至垂直升降机械与托架连接饺轴 A之距离,a-侧向钢模与托架自重 G2作用点 C 只垂直升降机械轴线的距离G2台车每次托运的钢模与侧向脱架自重(仅记一侧),-第 10 页N1-台车一侧布置的水平支撑机械个数。拆钢模时每个水平的支撑机械所承担的载荷P4=K1(fF2c-G2a)/bn1c-侧向钢模与混凝土粘结力的合理作用点至垂直升降机械与托架连接铰轴的距离,F2-台车每次托运的侧向摸板面积P5 工 作 平 台 传 至 立 柱 的 载 荷,工 作 平 台 载 荷 可 采 用300-400kgf/m2;P6平台传至车架梁上的载荷,假定作用在梁跨中部;P7-台车操作设备载荷,假定作用在梁跨中部;P8-根据施工需要由台车吊用的设备重(作设计考虑);由双铰“”形刚架受力做内力分析:(1)安装钢模时,车架梁受 P1,P5,P6,P7 及升降机械自重作用,同时台车立柱承受侧压力 P3,台车丝杆承载;(2)台车脱模时,丝杆卸载,车架梁受力不变,台车立柱承受拉力 P4;(3)其他工作时间,台车车架梁承受压力,底梁及行走承载。按钢架内力计算公式,车架梁及立柱应力验算如下表:-第 11 页2、台车托架设计台车托架分为顶拱托架和边拱托架。边拱托架结构简单、受力杆件按照简支梁计算;顶拱托架主要有顶纵梁、台梁、小立柱、小立柱拉杆等组成结构紧凑、受力效果好,按照框架结构简支梁进行计算。四、机械传动结构设计四、机械传动结构设计1、垂直升降机械垂直升降机械起固定支撑作用的采用螺杆式千斤顶,螺杆和丝母均采用梯形螺纹。起重螺杆的设计主要是对螺杆直径的确定,其次是对螺杆的自锁性及稳定性进行验算。根据在工地使用的特点,要求其中螺杆具有较大的钢度。螺杆直径按压缩扭转和弯曲的复合应力来确定:=(Q/F+M/W)2+4(MT/WJ)21/2M=QliMT=Qdc/2*tg(+)W=0.1d13WJ=0.2 d13车架选用截面(kgf/cm2)max(kgf/cm2)f(cm)焊制工字钢 60#横梁 I8524250.7焊制工字钢 50#立柱 I1242焊制工字钢 60#横梁 II-1184焊制工字钢 50#立柱 II1358焊制工字钢 60#横梁 III1292焊制工字钢 50#立柱 III1048-第 12 页d1(1.31.4)Q/1/2F=d12/4tg=s/dCf=tg螺杆螺母间的摩擦角大于罗纹的升角时,可以保证自锁。根据台车自重及其他外力合计确定本台车所选用的丝杆直径为 75mm,丝母直径为 110,螺纹型号为 Tr10*300。2、水平支撑机械水平支撑机械采用双头螺杆,它主要完成侧向模板的就位与固定支撑,也可以作为钢模板的横向细微调节使用。水平支撑螺杆在立模衬砌时压力较大。水平支撑机构螺杆的螺纹内径d 按照下列公式进行计算:d1=1.3*4 Q/1/2根据台车侧向收模力估算及其他外力合计确定本台车所选用的丝杆直径为 65mm,丝母直径为 90mm,螺纹型号为 Tr9*300。3、行走装置设计采用电机带动摆线针轮减速机和开式齿轮的传动,带动主动轮,电动机与减速机直联式。驱动计算中,因为衬砌台车在隧洞中运行,可以不计风阻力;考虑到轨道铺设不平,洞内运行条件差,其驱动功率应适当加大;隧道的纵向坡度影响较大,必须详细计算驱动功率。F驱动=Gcos+GsinP=FvG台车总重,约 100 吨摩擦系数,取 0.05代入数据 P=10.3Kw。-第 13 页选用 2 台 7.5Kw 电动机、减速机同时驱动,并采用制动器制动,速度控制在 8m/min。五、液压传动机械设计五、液压传动机械设计1、液压千斤顶基本尺寸确定依据衬砌台车方案设计确定的参数(荷载、行程)进行计算;然后根据台车结构布置要求与操作,油缸基本参数与尺寸的规定,结合国内油缸标准内、外径系列尺寸选取油缸直径。(1)活塞杆直径 dd=4Q/1/2式中 Q 为活塞杆上的推力。活塞杆长度根据行程及布置要求决定,其受压时的稳定验算与螺杆相同。(2)油缸内直径 D1不考虑背压影响时:D1=4Q/P1/2(推)D1=4Q,/P+d21/2(拉)考虑背压影响时:Q=A1P1-A2P2(推)Q=A1P1-A2P2(拉)(3)油缸壁厚计算一般按照薄壁公式计算=QD1/2当 D/D11.1时,按照厚壁公式计算D=D1(+P)/(-P)1/2-第 14 页项目单位设计控制数据升降油缸行程钢筒内径活塞杆直径mmmmmm250250150边模油缸行程钢筒内径活塞杆直径mmmmmm30010050平移油缸行程钢筒内径活塞杆直径mmmmmm10010045