电磁场与电磁波课后答案(冯恩信著)西安交通大学出版社各章答案汇总.docx
习题1.1已知=2£ + 31-大片=£ + ;-2£,求:(a)彳和B的大小(模):(b)d和8的单位矢量:(c) A Bi (d) AxBx (cM和8之间的夹角:4在8上的投影.解:(a) /<和8的大小J = I J| = J-: +/ + E = "J 2, +3。+1,= >4 = 3.748 =同=+ B: + B: = 712+l2+2: =R = 2.45 (b)4和8的单位矢量J 1a = = (2.r +3y-z) = 0.5 3 5r+ 0.80-0.26T/4 3.74.B 1ft = _ = _(x4-2z)=0.408v + 0.408j>-0.8l6f(c) A BN - * = 4凡 + 4 优 + 4 8. = 2 + 3 + 2 = 7 XX J J -一(d) Ax BAx B =xB、y z4 48, b:y 23 -1 = -5.i + 3,v - 21 -2(eM和。之间的夹角a根据 后=ABcosa得cos a =AB 7AB - 9.163= 0.764a = 40.190/在8上的投影- AB7= = 2.86B2.451.2 如果矢址4和C在同一平面.证明4 (8xC)=0.证明:设矢量4、8和C所在平面为个平面A = Ai+ AryB = Bxx+ BryC=C,x+Ctyx y zfixC= B, B、B: =(-G-JC,求+ (/G-BCC +(比 c,-纥CM a cy c= (8£-BC”A (ffxC) = Ox(S(Ct -filCx)i z = 01.3 已知 d=fcosa+sina、8= fcos夕-_psin/和 C=£cos/? +jsin/7,证明这三个矢量都是单位矢量,且三个矢量是共曲的.证明:I)三个矢员都是单位矢量J = |j| =+ X; + £ = Vcos* a + sin" a = 18 = b =牺 + B; + B; = JcoS 夕+ siii 夕=1C = |c| = JC:+C:+C; = Jcos:# + sin:力=I2)三个矢鱼是共面的x y zBxC = Bi B、 B = 2cos/?sin (£,U c, C.-4 (fixC) = Ox2cossin/Jz z = 01.4 A = x -¥ 2y-z B = ax y-3z ,当 月时.求a .解:当;LJ时,A B = Q与= a + 2 + 3 = O所以a =-51.5 证明三个矢量A = 5x-5y. 8=3£-7夕一2和。=-21 2/ 2形成一个三角形的三 条边,并利用矢积求此三角形的而枳.证明:因为A-B = 2x + 2y + zA + (5) + C = 0所以三个矢量4 、8和C形成一个三角形此角形的而积为MXB. B、 Btx y5 -53 -70 = V5: +5- +2O2 /2 = 10.61.6 P点和Q点的位置矢量分别为5f+ 12/ + 2和2i 3$,+ 2 ,求从P点到Q点的距离矢 量及其长度.解:从P点到Q点的距离矢星为R = rQ-rr = (2x - 3y + z) - (5x +12y + z) = -3x -15y从P点到Q点的矩离为T? = |«| = 732 + 15: =15.3解:设矢星C与西矢量4 = 4£一3/+ £和8=2£ + »-2都正交,则(1)1.7 求。两矢量:4 = 4£一3步+ 2和8= 2£ + /-£都正交的单位矢用.A C = 4C,-3C, +C =0(2)C = 2Q+C, -C =0(1) + (2) 得 6C, -2Ct = 0(I) +3x(2)得 10C, -2C =0如果矢垃C是单位矢昆,则+ 9C; +25C: =1c = |q=JEF+c;+C =小所以 Cx =-?=2=0.169Jl + 9 + 25C, = 3C =0.507C. =5C, =0.845C = O.I69x + O.5O7y + O.S45z1.8 将直角坐标系中的矢量场E(x,y,z) = f,E(xj,z) =/分别用UI柱和圆球坐标系中的 坐标分量表示.解:在圆柱坐标系中工cose sin 0 0F:cos sinp 0rcos。=-sin e cos 0 0Fvl=-sin 3 cos 00=-sin儿001儿00100F(p&,z) = cos 闲- sin 即cos/ sin 0f,2'costp sin。0o-sin>=-sin> cos9 0-sin。cos。01=cos。400100100F:(p.(p,z) = sin 而+ COS80在圆球坐标系中一工sinOcos 夕 cosOcos/sin Osin/ cosOsin 夕cos。-sin。%、一sin 夕 sinOcos。cos©sin sin 0。.cosO 11£ rqsinOcosw=cosJcos/ 一 sin。cossin (p co§。-sin J° .cosJcos。一§in/Fy(r,O, <p) = sin Ocoscpp + cos0cos sin(p<p产;Ffnsin0cos coscossin 0sin (p cos0sincos。-sin。F; %F-一 sin。COS00屋sinJcos。sinOsinoCQsO0sinJsino=COS0COS0cosOsin 0-sin1 =cosOsin 0-singCOS000cos。Fz(r,0,(p) = s iUs vpp + co 9s iqo0 + co tp<p1.9 将同柱坐标系中的矢量场6(0,07) = 2立6(0,0*) = 3。用立角坐标系中的坐标分E(x,y,z) = 2cos 而+ 2sin 存乂因为(2)r9£ (x,y, z) = 20 =+ 妙)一 sin* cos。0A(x,>>,z) = -3sin 而 + 3cos利用(2)式可得户2(X,乂 Z)= 3。= I,、(xy - yx) y/x +y1.10 将例球坐标系中的矢星场6亿夕=5f,K3,0,(p) = 0用直角坐标系中的坐标分量表示解:根据44=sinOcos。sinSsin。cos®cos> cos "sin 夕. sin 夕 cos。44(1)A. * >cos。-sin。04.得X'sincosCOS夕COS0一 sin 0F5'5sin 夕 cos。=sin Osin。cos夕sin °COS00=5sin 夕 sin。“一cos夕 sin 60|_0_5cosH6(工,居工)=v5 s in cos (p + v5 s in esin e + £5cos(x = rsin0cosy = rsin 0sin (p(2)z = rcos05得E (x.y,z) = .=(xx + 0 + zf)JjT + y +z百人r,仇(p) = 0 = 0x-A1,44C、r =7(xv + yy + zz)Jx2 +y2 +z2V>= r-f(xy-yx)+尸F2(r,0,(p) = 0 = xr=1 (xy-yx)x 1=:(xx + >y + zz)Jx +yJx +y +z,=/ 1 I 1-z(x- +y2) + xzx + j 讶7x2 +y2 ylx2 +y2 +z21.11 计弟在回柱坐标系中西点尸(5. ”/6,5)和0(2, ”/3,4)之间的即席.解:两点P(5, n / 6,5)和0(2, n/ 3.4)之间的距离为= J(X| -X2/+(乂 一2> +(Z| -Z2/= a/(5xcosCt/6)-2xcos(/3)' +(5xsin(4'/6)-2xsin(4,/3)' +(5-4)2=7(3.33):+(0.7 6 +(1)2 = VI2.69 = 3.561.12 空间中同一点上有两个矢量,取圆柱坐标系,/ = 3。+ 50-418=2。+而+ 3"求:®/f+8 : (b)/x8: (c)4和8的单位矢fit; (d)4和8之间的夹角;(c)4和8的大 小:4在8上的投影.解:(a) 1 + A = (3 + 2)p + (5 + 4)0 + (-4 + 3)z = 5p + 9p-z(b)AxB<P纥,-4 =3lp-l7 + 2z 3/(ip + 50 - 4£) = (25 + 4。+ 32)vy+TTT is= (2p + 4 + 3z) = y-(2p + 4 + 3f)(d)4和5之间的央加0 = cos"1 (土) = cos-1 ( 14 ) = 68.4° AB 38.077(0/1和8的大小,= "; + /+/; =7.0718=正 + 比+比=5.3854在8上的投影1*=(3。+ 50-4£) y(2Q +砺+ 3力=2.61.13矢量场中,取画柱坐标系,已知在点P(l.”/22)矢量为彳=20+ 30,在点。(2./r,3)矢员为8=-3。+10£;求:(aX+8 : (b) 4 8: (c) 4和8之间的夹角.解:格换到直用坐标系=3.r +105+ 2y(a) A4'B=2y + Gz(b) A »R =9d和8之间的夹角*/ 5 9e = cos" () = cos 1 () = 125.7AB15.441.14计算在圆球坐标系中两点P(I0,t/4,1/3)和0(2»。2,力之间的距离及从P点到Q 点的距离矢量.解:根据同球坐标与口角坐标的关系x = rsincos0< y = rsin sin (pz = rcostf.v, = rsin0cos = 10x0.707x0.5 = 3.535, 必= rsml?sin = lOx0.707x0.866 = 6.1224 =rcos0 = 10x0.707 = 7.07x2 = rsin Ocos(p = 2 x 1 x (-1) = -2y2 = rsin0sin = 2x lx = 0z2 = rcosO = 2x0 = 0d = J(X| -2尸 +(必一%)2 +(Z| -z2)2=7(3.535+ 2)2 +(6.I22)2 +(7.O7)2 = 10.87 1.15空间中的同一点上彳j两个矢量,取圆球坐标系,4 = 39+ 3 + 50, 8= 25一3 + 40,求:(a)/l+8 : (b)48; (c)/(和8的单位矢员:(d)/(和8之间的夹角:(c)/l和8的大 小: 彳在b上的投影.解:(a) /-"=5户+ 90(b) 4 8=25(c) /和6的单位矢显a = -=(3户 + 征 + 5。): b = -7(2户一日 + 4。)735V21彳和8之间的夹角/11 / ' * B .-1 /ru。0 = cos () = cos () = 22.75AB27.11(d) /和B的大小4+ 力 + 4: = 5.928 =正+ 解 + 8: =4.58 彳在8上的投影A h = (3r + 0 + 5<p) 3(2户一。+ 40) = 5.455V211.16 求/(K,y,z) = xy'z 的梯度.解. HTT Vf = x-v + z = 3x2y2zx2xxy2zaccz1.17求标量场f(x9y9z) = xy2z2在点(1,1,1)沿= xf-2y + z方向的变化率解:c-> f aa Cy a Cta a a av/ = .v + y + z = uv + .n- + 4zz a 砂 应/ = . (xv - 2.0 + i)x2 +/ +£f ; xy-2x + 4za,x2 +y2+所以孤小=石/ wZ QJ W1.18由。1> = £= +/一丁 + £丁,利用圆柱坐标和直角坐标的关系,推导 公0a中=0巴+ /3+ £虫.dp p d(p &解:在直角坐标系中中=£虫+ /3 + E3a 0 次(I)(2)DA .母.即.母VO = X + y + zax oy ci,、处,. 、加.加=(Qcos>_/sin>)+ (Qsin« + 0cos夕)+ z&CZa cp dx c(p dx op p c(pZiD c4)dp c>c(p cO .1 c<D=-+-=SH10 +COS。0Op dy dtp dydp p d(p再由(6) 一 (9)式可得。. 凶) 却VO = (pcos?-sin(p) (-cos。-dp p dtp一°凶).1 a0 .31)+ (0sin e + 0cos0)(sine +cos(p) + z dp p d(pA.2,。1 2 .,pcos*(p +(psirTdpp dtp-却 1 M) .(P 一(pcossm-pcossm。却. -IN),+ psin* 0 + 0cos* (p + (pdpp d(pdp8S”in° + / 抑。即00sosin。+ 啰dpp d<p0 = 0电+ _1劲 + £ 效 dp p ckp ck1.19 求/(p,*,Z)= pCO印的梯度.解:V/' =+ z = Qcos°-sin 31.20由利用回球班标和口用坐标的关系,推导41 斑(p-:rsin。碑解:X = rs i co 取j = rs i s i 呼 z = rc or = yjx2 +艮 +z?& +/,0 arctg(p-arctg、xx -户sin,cose + cosecos9-0siney = rsin Osin °+ OcosOsin 9 + 0cos 夕z = -cos",sin弛=虫虫+虫丝+以”a dr dx dO dx dtp dx加 _ M> dr c4> d0 M> c(p dy cr dy c0 dy c(p dyH)_ 2 dr + &> c G + c4> d(p必 dr dz cO dz c(p dzar-ar出=sin0cos=sin Osin 0cos。-cosGcostp =cos0sin dy r由 1.c=smdz r切 sin。dx rsin切 _ cos(pdy rsinff=0(西文+竺变+/生)爆Wc°”%°Sc。,加iM dr dx dO dx c<p dxAI) fjr /M) G<D f)(D*+ (+-) (rsin 6>sin (p + cos0sin tp4- cos)dr dy vO dy v(p dy,凶)""和。夕却如、厂口方小+ (+) (rcosO-ffsmff)or vz ctt oz c(p vz=(-sin0cos?) (5sinecose + JcosJcos伊一0sjn。)+(_L£cos6cos夕)(rsin Gcos(p + AcosOcose 0sin (p) r d01 cXP .-一(sm(p) (rsin夕cos。+ 6>coscos-sine)rsin0 c(p+ (sjn6sin e)(/sinesine + dcosesine + 0cosQ) dr+ (-cossin(p) (rsin Osin。+ 0cos6sine + 0cos0 r cOI c4).°+ (-:cos?)(户sinesine+ ecosesine + 0cos°)rsin。c(pAb .+ (cos) (rcosG - 0sin ff)dr+ (sin(rcos0-sin0)r dOrsin0 却V0)= r + 6>- + , a 丫 ©o1.21 求/S。,伊)=r2 sinecos3的梯度。 解:Dr a 3 1- I )Vf = r-(p-& r cO rsinff cip=r2rsin 8cos 0 + coscos rsin (p1.22 求梯度Vp,其中K为常数.解:Veh = r- = rkekr1.23 在园球坐标系中,矢量场户(广)为户(7)=二" 其中为常数,证明矢量场户(广)对 尸任意闭合曲线/的环量积分为年,即jFdl =0. I证明:根据斯托克思定理:p</= JjVxFJSr rdrxnOcp-k1v x P(r V v r d dd-nvxrrj vx , r - 1 . r厂sm夕&c(pV4 o 厂0所以fr(/=JJvxF4ZS=o1.23 证明(1): (2) VF(P) = F(0)V<D .证明:.veXY2 dx.I a f ,中即+ V中-v;'V dy 甲-砂中上 T2 dz工屋7中 甲-dx dy.6 小、 f.cT+ z云中 一记"三+.即 v . ®= (TVO-0V'E)(2) 7F(D) = x-F + y-F + z-Fdx dy dz个个个=£尸'=6+产'/= 中+*二=F'()dxdydz1.24 |h V / = lini -A,t。解:1.25 由/ =+ - ar1/,v - J =、 (r Ar) r* er解:r dA (1)=弘生+ 力dr推导4 = =L+T"+T.AKa a az<d: .qs:, _: dr*-FAV图IT"+会推导1 = ,4(/14“)+0 +学和cy czpeppc(przI c»1 矶-(sin6M0) + -rsinff cffrsinff ckp名利十 -4 AdAx dip 空r dpd(pdtp dx cp dy dtp dy AAdS由V帕 ddd+ -i+ ( Yveve I0 1V g ddS场语I dv0电d (bod dqi Jq-+ '必.son+ 1 y d) uisiAsoo + jzso3(*uis+ 4 yd) ,ins +Vt? 1 Q , I QQ 1 ,d)Q d+ .uis-+,怩/d d>Qm UIS0s03小.S03l VQ ,d (hQddqdq'yd) .uis+ Fsoouis彷lhsOsoj y-(f) .soo ' y I t?, I ,Q z t?上* 力。 d,/ dQ+ (曲 o o y + ! s' /);成 031 + (成03"夕+曲!S/):血 i s +w (bo d ) do(血! s y _成 o n' 加 i s(如 i s jz - 0 3 * K)0 n0【Q生电。0危中XQ diQXQ电'取。0 'VQS 修d>Q 'yQ& '陀-"d 包而 SO3=I00OQ。叩一型而竺的V- - -1.gv。ST小Is.血! s午0加son_ fi y fi1 cAm(2) 4,) + 5-土 (sin 制,)+ !厂 a rsin。朗rsin0 c(p力 .=sin 0cos(p3rsin Osin (prsin 0cos。 rsinl?cos0cos cossin° -sin。cA. drcA cOcAc(p/ drdffM d(p& Sxc0 dx6夕dx& dycO dyd(p dy用工 dr dA, dO cAz c(p+ -:+ J、+三& & dO & c(p &=sincos(sin0cosz +cos6cos阿0 -sm ) &3+ cos6cose(sinOcosgl, +cos0cosvl -sinrf )/ / -(sinOcos(pAr +cos6cos加“ -sin® ) rsinO ckp4-sin 0sin (p (sin6?sin(pAt + cosOsin/4 4-cos,)| ,、+ cos<9sin一(sin "sin 04, +cos0sinf + cos加 J r dOcose 3 . . c . 八. 、+(sin t/sm+cossin4d 4-cosJrsinff 丽+ COS0(cos6Wr - sin0AO) dr一丝三(co皿.-sin/) r c®= siir 0cos2(p-r Ar +sin0cos0cos2Ao -sinOcososineJ/ drdrdr+ sin2 0sin2 (pj 4, +sin0cos0sin: p+ sin 0sin q)cos<p Ar(f'( f'( f+ cos* 0Ar -cos0sin 0& &+ -(sin0cosl9cos2 (p Ar +cos2 "cos? (p-cos0cossin q) A )rdOdOdO-(sin<?cos0sin;(pAr -Feos2 Osin,(p Ao + cosdsin(pcQsq) A )rdO30dO-(sin 0cosGAf -sin2 0Ao) rdOdO十:(cos2 0cos2 以4, -sintfcos0cos2 (pA0)+ (cos2 0sin2 0At -sinOcoMsin,0%) r4-(sin: 0Af 4-sin6>cos6M) r+ !(-sin8sinpcos/二X, -cos6sin>cos伊二40 +sin'>二4 ) rsm0ckpcKpdip+ !(sin "sin tpcostp A,. + cosdsin <pcos<pAe + cos2 <p A J rsmOdtpdip+ :(sinOsin'斌 + cosOsin,(pA0 +sin"osgl ) rsin+ !(sin/9cos2 gt4, +cos0cos:(p.4o -sin”os04 ) ,sinsinff /、cos。sin。 rsin。apw,)+rsin cf)(sin OAo) +/sin。ap1.26计算卜列矢量场的散度a) F = yzx 4- zyy xzzb)户=0 + p0c) F = 2r + r cos Of) rip解:cos2 0sin"(sin6!F;) + J = -sin + rsin0 cQrsin"加 r1.27 计算散度。(就),伉(&*'),其中不为常矢量.解: (3)= (pp) = 2 PP, 声中 /,1 /21产1.28 由中=f+ f推寻中=上上(夕勺)+7f&- 6Lp dp dp p-由广解:+小&2 #c<P dp c34) c(p c<t> cd> . I c<P=-+= c O IpS I 即ex ex cp ex c(p cp p c(pc<P epe c(pcO.凶)12=+ -=S 1 np+ C0 »dy dy cp dy dip dpp cq)d20>z d.1 5 wc<D. I-=(cos > sin 砂Xcos。sin/)dx*dp p d(pdp pd(p,d?."1 讪、.1 d ,2、= cos" (pr -sm 9cos夕()-sm e(co印)dp,dp p d(p p d(p dpd2+ sm(sin)p- c(pc<pz. si a、,. m>ir = (sm+cosp)(sm+ cos0'dydpp d(p dpp dtp i 8,e. d 1 即1 a .= sin* (pr + sMecose() + cos°(sin9)dp'dp p dtpp dtp dpI d z抑、+ cos (cos) p' d(pc(pc、“,中e / 却、.i a, ao)、V*<p = cos* (pr-§m3cos9()-sinp(cose)dp'dp p dip p dip dp. i a . ao)+ sm<p(sm)0. c(p dip2 a2o . a / ao、 i e ,.砧、+ snr ip丁+ sm 夕cos伊() + cosq(sm°)dp'dp p d(pp d(p dpI d z+ COSQr (COS )p dtp d(p护中 .,1卸. 1 a:4).1卸=r + sin(Psin(z>cos+ sinscoss-:dp'p dpp d(pdpp- dtp.,1 d2>+ $«r 二、,P即,i &i). i. i ao) , i 次中4-COS*(P+cos/sin>COS0sme-r 4-COS* (p-rrp dpp d(pdpp dtp. dqf1.29已知a) f (r)= x2zb) /(r)=pc) /(r>=r求丁.解:1.30求矢量场户=加 + 0 + zf穿过由1,04 04 ;r.04z4 1确定的区域的封闭面的通M.解:F= pp+ g) + Z2解法1:号户而=JJ户+JJ户,拉+ JJ户,店+JJ户而ss(&&s<区为半径为I的阴弧侧由I;另为侧平面;&卜端而:S4上端而.Jj F - i/S = JJ(而 + 0 + zf) ipdtpdz = f j ppdqxlz = n 品,o oi iF dS =(pp + q)+ zz)-(y)dxdz = -f j(j+-)尸件xSj s,-i o7 x ' y *0=jdv-|dr = 0 I 0jj户”店=jj (加+。+君)0(力川/卬夕=0JJ 广而=JJ(即+ 0 + 三) mR0 = /r/2CJ2 - 1目户而=0户而+ JJ户,云+ JJ户,店+ “户欣=3i/2 S易&sS,解法2:1 c>1 cFVF = -(pFJ + - + - = 2 + 1=3 p却p cip 也目户 /=jjjv 而,=川3,伍=3=3”/2 SVV,AAAAdlx y z1.31 |I|( V X/4) , n = 11IT1''推导Vx/i = »a<to AfCy uL4 4 4解:l)设才=£, /为边长为Ay和也的中心在(x,j,,z)的斑形回路J A , dl =-/.Az (4 4Az) A1, 4-(/(, HAr)A /I,. Av2)设万=, /为边长为&和川的.中心在(K,J,,Z)的矩形回路r- -dAdAj Adi =-/、Ar -+-Ar)Az +(4 +-AzJAr + 4AzIex(二cAt A , 64 A AAzvAz +AzAv axdz3)设卤=2. /为边长为At和与,的.中心在(X,乂z)的矩形回路L rSAMA-dl = 一4 -(4 + - Af)At +(4 + Ax)Ar + 4AvoxdAr 34lai,Ae 十一-4vAv dxdAt dAy-+ -df dx1.32计算矢量场F = x)a + 2vzy 一 £的旋度=£(-2)+ y(0 4-0) + 2(- x 4- 0)-2yx -xz1.33 计算 xp,Vxr,Vx(zp),Vx1.34 已知 A- yx-xy,计算彳 (V x A)解:J (V x J)= (j左一炉) (-2z) = 0对于任意矢量,若=Ax(x9y)x + Av(x.y)y4 4(x,y) 4(qy)0-AA A dA1.35 证明矢量场E-yzi +同+ 小£既是无散场,乂是无旋场.1.36 已知 £= £0cos停sin施,求和 VxE。解:-I c> ,1 C>1 cEmV £ = -(r*EJ + !(sin6E0) + -r* crrsin6d9rsinG exp=与三(/ E。cos0) + 5三仁山 0(-Eo s in 0)r errsix02E0 cos。 2£0 cos, =0r0 rsin 丽rE0 rsinfiErO g 商 一 rE。sin6>rsnff(pg加0=(-Eo s i rt? + & s i W) = 01.37 证明x(a>/)= <I>V X / + <!> x A 解:AX- dV x 他 4)= 金中44一吗.也一%+4 dy dz dz dxg4dyf=-) + y(dy 改 dz也)十五也一四dx dx dy+ 只4 不-4 万)+ y(4 云4 M)+z(4 工-4 不)=0V x 4 + V<l> x /(1.38 已知户=<y(.v)J(v)J(z),V xF = O,计算户解:根据亥姆霍兹定理F(r) = - V<r) +Vx A(r)其中出=(川辛47r ”,J r'M)A(r)4k "J 1tlV'因为Vx户=0,因此= 0:对于户= 6(x)6(j,)6(z)V'.Ffr')Try/(X-X-)1+(y-y')i+(Z-Z')2所以1.39 已知户=0,V x 户=z<J(x)J()J(z),计算户解:根据亥姆在兹定理F(r) = -Vr) + VxX(r)其中力"a4京平rr2-、1 rffV,xF(f,) ./)=蔡叫下丁州因为户=0,因此中=0;对于yxr= hy(x)d(pMf(z)粉)=,W毕毕/,4” » -j(x-x,)2+(y-y,y+(z-z,)2=z! =(rc o3-s iM)4m, A加所以F(r) = VxA(r)0arjar.ST r第2章习题2-1.已知真空中有四个点电荷 =1C, %=2C <7, =4C. g4=8C,分别位于(1,0,0), (0,1,0). (-1,0,0,). (0,-1.0)i.求(0。1)点的电场强度.解:R =-x + z;R2 =-y + z;R =£ + 云用=y + zr _ 1 nA , %凡、qA .仇由、- 3*+6+1524 叫 R; R: R; R:4 吟香2-2.己知线电荷密度为p,的均匀线电荷阳成如图所示的几种形状,求P点的电场通度,题2-2图解:(a)(b)(c)题2-3图-| p,aid<p<1 2 冠 »。in 柄、-cosqK)d(p =-y由对称性后=E+员+员+及=o 由对称性点=&+艮+ M=o建立坐