欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年三角形知识总结与尺规作图知识点.doc

    • 资源ID:68445814       资源大小:409.54KB        全文页数:17页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年三角形知识总结与尺规作图知识点.doc

    第一部分 三角形考点一、三角形 1、三角形的概念由不在批准直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。4、三角形的特性与表达三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上 三角形是封闭图形(3)首尾顺次相接三角形用符号“”表达,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。5、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可拟定第三边的范围。证明线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积三角形的面积=×底×高考点二、全等三角形 1、全等三角形的概念可以完全重合的两个图形叫做全等形。可以完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做相应顶点,互相重合的边叫做相应边,互相重合的角叫做相应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表达和性质全等用符号“”表达,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表达相应顶点的字母写在相应的位置上。3、三角形全等的鉴定三角形全等的鉴定定理:(1)边角边定理:有两边和它们的夹角相应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边相应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边相应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的鉴定:对于特殊的直角三角形,鉴定它们全等时,尚有HL定理(斜边、直角边定理):有斜边和一条直角边相应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换涉及一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60°。(2)等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于45°等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。等腰三角形的三边关系:设腰长为a,底边长为b,则<a等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,则A=180°2B,B=C=2、等腰三角形的鉴定等腰三角形的鉴定定理及推论:定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个鉴定定理常用于证明同一个三角形中的边相等。推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。推论3:在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半。等腰三角形的性质与鉴定等腰三角形性质等腰三角形鉴定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。1、两边上中线相等的三角形是等腰三角形;2、假如一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。1、假如三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。高线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。1、假如一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角等边对等角等角对等边边底的一半<腰长<周长的一半两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。考点四、相似三角形 1、相似三角形的概念相应角相等,相应边成比例的三角形叫做相似三角形。相似用符号“”来表达,读作“相似于”。相似三角形相应边的比叫做相似比(或相似系数)。2、相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。用数学语言表述如下:DEBC,ADEABC相似三角形的等价关系:(1)反身性:对于任一ABC,都有ABCABC;(2)对称性:若ABCABC,则ABCABC(3)传递性:若ABCABC,并且ABCABC,则ABCABC。3、三角形相似的鉴定(1)三角形相似的鉴定方法定义法:相应角相等,相应边成比例的两个三角形相似平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似鉴定定理1:假如一个三角形的两个角与另一个三角形的两个角相应相等,那么这两个三角形相似,可简述为两角相应相等,两三角形相似。鉴定定理2:假如一个三角形的两条边和另一个三角形的两条边相应相等,并且夹角相等,那么这两个三角形相似,可简述为两边相应成比例且夹角相等,两三角形相似。鉴定定理3:假如一个三角形的三条边与另一个三角形的三条边相应成比例,那么这两个三角形相似,可简述为三边相应成比例,两三角形相似(2)直角三角形相似的鉴定方法以上各种鉴定方法均合用定理:假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边相应成比例,那么这两个直角三角形相似垂直法:直角三角形被斜边上的高提成的两个直角三角形与原三角形相似。4、相似三角形的性质(1)相似三角形的相应角相等,相应边成比例(2)相似三角形相应高的比、相应中线的比与相应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。5、相似多边形(1)假如两个边数相同的多边形的相应角相等,相应边成比例,那么这两个多边形叫做相似多边形。相似多边形相应边的比叫做相似比(或相似系数)(2)相似多边形的性质相似多边形的相应角相等,相应边成比例相似多边形周长的比、相应对角线的比都等于相似比相似多边形中的相应三角形相似,相似比等于相似多边形的相似比相似多边形面积的比等于相似比的平方6、位似图形假如两个图形不仅是相似图形,并且每组相应点所在直线都通过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。性质:每一组相应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。由一个图形得到它的位似图形的变换叫做位似变换。运用位似变换可以把一个图形放大或缩小。第二部分 解直角三角形考点一、直角三角形的性质 (35分) 1、直角三角形的两个锐角互余可表达如下:C=90°A+B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。 A=30°可表达如下: BC=AB C=90°3、直角三角形斜边上的中线等于斜边的一半 ACB=90° 可表达如下: CD=AB=BD=AD D为AB的中点4、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90° CDAB 6、常用关系式由三角形面积公式可得:ABCD=ACBC考点二、直角三角形的鉴定 (35分) 1、有一个角是直角的三角形是直角三角形。2、假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理假如三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。考点三、锐角三角函数的概念 (38分) 1、如图,在ABC中,C=90° 锐角A的对边与斜边的比叫做A的正弦,记为sinA,即锐角A的邻边与斜边的比叫做A的余弦,记为cosA,即锐角A的对边与邻边的比叫做A的正切,记为tanA,即锐角A的邻边与对边的比叫做A的余切,记为cotA,即2、锐角三角函数的概念锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数3、一些特殊角的三角函数值三角函数 0° 30° 45° 60° 90°sin01cos10tan01不存在cot不存在104、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°A),cosA=sin(90°A)tanA=cot(90°A),cotA=tan(90°A)(2)平方关系(3)倒数关系tanAtan(90°A)=1(4)弦切关系tanA=5、锐角三角函数的增减性当角度在0°90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 (35) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据在RtABC中,C=90°,A,B,C所对的边分别为a,b,c(1)三边之间的关系:(勾股定理)(2)锐角之间的关系:A+B=90°(3)边角之间的关系: 第二部分 尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。2、五种基本作图:1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线;(1)题目一:作一条线段等于已知线段。已知:如图,线段a .求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP上截取AB=a .则线段AB就是所求作的图形。(2)题目二:作已知线段的中点。已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点). 作法:()分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;()连接PQ交MN于O则点O就是所求作的的中点。(3)题目三:作已知角的角平分线。已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、为圆心,大于 的线段长为半径画弧,两弧交AOB内于;(3) 作射线OP。则射线OP就是AOB的角平分线。(4)题目四:作一个角等于已知角。已知:如图,AOB。求作:AOB,使AOB=AOB 作法:(1)作射线OA;(2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O为圆心,以OM的长为半径画弧,交OA于M;(4)以M为圆心,以MN的长为半径画弧,交前弧于N;(5)连接ON并延长到B。则AOB就是所求作的角。(5)题目五:通过直线上一点做已知直线的垂线。已知:如图,P是直线AB上一点。求作:直线CD,是CD通过点P,且CDAB。作法:(1)以P为圆心,任意长为半径画弧,交AB于M、N;(2)分别以M、N为圆心,大于的长为半径画弧,两弧交于点Q;(3)过D、Q作直线CD。则直线CD是求作的直线。(6)题目六:通过直线外一点作已知直线的垂线已知:如图,直线AB及外一点P。求作:直线CD,使CD通过点P,且CDAB。作法:(1)以P为圆心,任意长为半径画弧,交AB于M、N;(2)分别以M、N圆心,大于长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD。则直线CD就是所求作的直线。(5)题目七:已知三边作三角形。已知:如图,线段a,b,c.求作:ABC,使AB = c,AC = b,BC = a. 作法:(1) 作线段AB = c;(2) 以A为圆心,以b为半径作弧,以B为圆心,以a为半径作弧与前弧相交于C;(3) 连接AC,BC。则ABC就是所求作的三角形。题目八:已知两边及夹角作三角形。已知:如图,线段m,n, .求作:ABC,使A=,AB=m,AC=n. 作法:(1) 作A=;(2) 在AB上截取AB=m ,AC=n;(3) 连接BC。则ABC就是所求作的三角形。题目九:已知两角及夹边作三角形。已知:如图,线段m .求作:ABC,使A=,B=,AB=m. 作法:(1) 作线段AB=m;(2) 在AB的同旁作A=,作B=,A与B的另一边相交于C。则ABC就是所求作的图形(三角形)。【考点练习】1、如图:107国道OA和320国道OB在某市相交于点O,在AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作法,保存作图痕迹,写出结论)2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,规定到三条公路的距离相等,问满足规定的加油站地址有几种情况?用尺规作图作出所有也许的加油站地址。3、过点C作一条线平行于AB。4、如图,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点。张老师请同学们将纸条的下半部分平行四边形ABEF沿EF翻折,得到一个V字形图案。请你在原图中画出翻折后的图形平行四边形A1B1FE;(用尺规作图,不写画法,保存作图痕迹)。5、如图,已知方格纸中的每个小方格都是全等的正方形,AOB画在方格纸上,请用运用格点和直尺(无刻度)作出AOB的平分线。6、小芸在班级办黑板报时碰到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB为直径,O为圆心(规定用尺规作图,保存作图痕迹)。7、已知线段AB和CD,如下图,求作一线段,使它的长度等于AB2CD.8、如图,已知A、B,求作一个角,使它等于A-B.9、如图,画一个等腰ABC,使得底边BC=,它的高AD=10、如图,有A,B,C三个村庄,现要修建一所希望小学,使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(保存作图痕迹)11、如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保存作图痕迹 .B A .12、如图,A为MON内一点,试在OM、ON边上分别作出一点B、C,使ABC的周长最小13、如图,已知两点P、Q在锐角AOB内,分别在OA、OB上求点M、N,使PMMNNQ最短18如图所示,EFGH是一矩形的台球台面,有黑白两球分别位于A、B两点位置上,试问:如何撞击黑球A,使黑球先碰撞台边EF反弹后再击中白球B?

    注意事项

    本文(2023年三角形知识总结与尺规作图知识点.doc)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开