欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《事件的相互独立性》PPT课件.ppt

    • 资源ID:68496881       资源大小:341.50KB        全文页数:20页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《事件的相互独立性》PPT课件.ppt

    2.2.2事件的相互事件的相互 独立性(一)独立性(一)高二数学高二数学 选修选修2-3什么叫做互斥事件?什么叫做对立事件什么叫做互斥事件?什么叫做对立事件?两个互斥事件两个互斥事件A、B有一个发生的概率公式是有一个发生的概率公式是什么?什么?P(A+B)=P(A)+(B)复习回顾复习回顾条件概率的概念条件概率的概念条件概率计算公式条件概率计算公式:复习回顾复习回顾 设事件设事件A和事件和事件B,且,且P(A)0,在已知事件在已知事件A发发生的条件下事件生的条件下事件B发生的概率,叫做发生的概率,叫做条件概率条件概率。记作记作P(B|A).思考与探究思考与探究思考与探究思考与探究思考思考1:三张奖券有一张可以中奖。现由三名同学依次无放回地抽取,问:已知第一位同学没有中奖是否会影响到第三位同学中奖的概率?设A为事件“第一位同学没有中奖”。答:事件事件A的发生会影响事件的发生会影响事件B发生的概率发生的概率思考与探究思考与探究思考与探究思考与探究思考思考2:三张奖券有一张可以中奖。现由三名同学依次有放回地抽取,问:最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗?设A为事件“第一位同学没有中奖”。答:事件A的发生不会影响事件B发生的概率。相互独立的概念相互独立的概念相互独立的概念相互独立的概念设设A,B为两个事件,如果为两个事件,如果则称事件则称事件A与事件与事件B相互独立。相互独立。1.定义法定义法:P(AB)=P(A)P(B)2.经验判断经验判断:A发生与否是否影响发生与否是否影响B发生的概率发生的概率 B发生与否是否影响发生与否是否影响A发生的概率发生的概率判断两个事件相互独立的方法判断两个事件相互独立的方法注意注意:(1)互斥事件互斥事件:两个事件不可能同时发生两个事件不可能同时发生(2)相互独立事件相互独立事件:两个事件的发生彼此互不影响两个事件的发生彼此互不影响想一想想一想 判断下列各对事件的关系判断下列各对事件的关系(1 1)运动员甲射击一次,射中)运动员甲射击一次,射中9 9环与射中环与射中8 8环;环;(2 2)甲乙两运动员各射击一次,甲射中)甲乙两运动员各射击一次,甲射中9 9环与环与乙射中乙射中8 8环;环;互斥互斥相互独立相互独立相互独立相互独立相互独立相互独立(4 4)在一次地理会考中,)在一次地理会考中,“甲的成绩合甲的成绩合格格”与与“乙的成绩优秀乙的成绩优秀”2.2.推推广广:如如果果事事件件A A1 1,A A2 2,A An n相相互互独独立立,那那么这么这n n个事件同时发生的概率个事件同时发生的概率P(AP(A1 1A A2 2A An n)=P(A)=P(A1 1)P(AP(A2 2)P(AP(An n)相互独立事件同时发生的概率公式相互独立事件同时发生的概率公式等于每个事件发生的概率的积等于每个事件发生的概率的积.即即:练一练练一练:已知已知A A、B B、C C相互独立,试用数学相互独立,试用数学符号语言表示下列关系符号语言表示下列关系 A A、B B、C C同时同时发生概率;发生概率;A A、B B、C C都不发都不发生的概率;生的概率;A A、B B、C C中恰有一个发中恰有一个发生的概率;生的概率;A A、B B、C C中恰有两个发生的概率;中恰有两个发生的概率;A A、B B、C C中中至少有一个发至少有一个发生的概率;生的概率;(1)A(1)A发生且发生且B B发生且发生且C C发生发生(2)A(2)A不发生且不发生且B B不发生且不发生且C C不发生不发生练一练练一练:已知已知A A、B B、C C相互独立,试用数学相互独立,试用数学符号语言表示下列关系符号语言表示下列关系 A A、B B、C C同时同时发生概率;发生概率;A A、B B、C C都不发都不发生的概率;生的概率;A A、B B、C C中恰有一个发中恰有一个发生的概率;生的概率;A A、B B、C C中恰有两个发生的概率;中恰有两个发生的概率;A A、B B、C C中中至少有一个发至少有一个发生的概率;生的概率;俗话说:俗话说:“三个臭皮匠抵个诸葛亮三个臭皮匠抵个诸葛亮”。我们是如何来理解这句话的?我们是如何来理解这句话的?明确问题:明确问题:已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.8,0.8,臭皮匠老大解出问题的概率为臭皮匠老大解出问题的概率为0.5,0.5,老老二为二为0.45,0.45,老三为老三为0.4,0.4,且每个人必须独且每个人必须独立解题,问三个臭皮匠能抵一个诸葛立解题,问三个臭皮匠能抵一个诸葛亮吗?亮吗?那么,臭皮匠联队赢得比赛的概率为那么,臭皮匠联队赢得比赛的概率为因此,合三个臭皮匠之力,把握就大过诸葛亮了!因此,合三个臭皮匠之力,把握就大过诸葛亮了!设事件设事件A:老大解出问题;事件老大解出问题;事件B:老二解出问题;老二解出问题;事件事件C:老三解出问题;事件老三解出问题;事件D:诸葛亮解出问题诸葛亮解出问题则则你认同以上的观点吗?事件的概率事件的概率不可能大于不可能大于1公式公式 运用运用的前提:事件的前提:事件A A、B B、C C彼此互斥彼此互斥.明确问题:明确问题:已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.8,0.8,臭皮匠臭皮匠老大解出问题的概率为老大解出问题的概率为0.5,0.5,老二为老二为0.45,0.45,老三为老三为0.4,0.4,且每个人必须独立解题,问三个臭皮匠中且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比至少有一人解出的概率与诸葛亮解出的概率比较,谁大?较,谁大?解决问题解决问题引例的解决引例的解决引例的解决引例的解决略解略解:三个臭皮匠中至少有一人解出的概率为三个臭皮匠中至少有一人解出的概率为 所以所以,合三个臭皮匠之力把握就大过,合三个臭皮匠之力把握就大过诸葛亮诸葛亮.已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.9,0.9,三个臭皮匠解出问题的概率都为三个臭皮匠解出问题的概率都为0.1,0.1,且每个人必须独立解题,问三个臭且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?葛亮解出的概率比较,谁大?探究探究:歪歪歪歪此时合三个臭皮匠之力的把握此时合三个臭皮匠之力的把握不能大过诸葛亮不能大过诸葛亮!分析分析:例题举例例题举例例题举例例题举例例例1、某商场推出两次开奖活动,凡购买一定价值的、某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都为两次兑奖活动的中奖概率都为0.05,求两次抽奖中,求两次抽奖中以下事件的概率:以下事件的概率:(1)“都抽到中奖号码都抽到中奖号码”;(2)“恰有一次抽到中奖号码恰有一次抽到中奖号码”;(3)“至少有一次抽到中奖号码至少有一次抽到中奖号码”。例例2.2.甲甲,乙两人同时向敌人炮击乙两人同时向敌人炮击,已知甲击中敌机已知甲击中敌机的概率为的概率为0.6,0.6,乙击中敌机的概率为乙击中敌机的概率为0.5,0.5,求敌机求敌机被击中的概率被击中的概率.解解设设 A=甲击中敌机甲击中敌机,B=乙击中敌机乙击中敌机,C=敌机被击中敌机被击中 依依题有题有,=0.8互斥事件互斥事件相互独立事件相互独立事件 不可能同时发生的不可能同时发生的两个事件叫做互斥两个事件叫做互斥事件事件.如果事件如果事件A A(或(或B B)是否发生对事是否发生对事件件B B(或(或A A)发生的概率没有影响,发生的概率没有影响,这样的两个事件叫做相互独立事这样的两个事件叫做相互独立事件件P(AB)=P(A)+P(B)P(AB)=P(A)P(B)互斥事件互斥事件A A、B B中中有一个发生,有一个发生,相互独立事件相互独立事件A A、B B同时同时发生发生,计算计算公式公式 符符号号概概念念小结反思小结反思小结反思小结反思记作记作:AB(:AB(或或A+B)A+B)记作记作:AB辨一辨

    注意事项

    本文(《事件的相互独立性》PPT课件.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开