欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学建模-微分方程模型ppt课件.ppt

    • 资源ID:68511825       资源大小:2.23MB        全文页数:123页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学建模-微分方程模型ppt课件.ppt

    资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值数学建模数学建模 微分方程模型微分方程模型关晓飞关晓飞同济大学数学科学学院同济大学数学科学学院资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值一、什么是微分方程?一、什么是微分方程?最最简单的例子最最简单的例子资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值引例引例 一曲线通过点(一曲线通过点(1 1,2 2),且在该曲线任一点),且在该曲线任一点M M(x,y x,y)处的切线的斜率为处的切线的斜率为2 2x x,求该曲线的方程。,求该曲线的方程。解解 因此,所求曲线的方程为因此,所求曲线的方程为 若设曲线方程为若设曲线方程为 ,又因曲线满足条件又因曲线满足条件 根据导数的几何意义可知未知函数满足关系式根据导数的几何意义可知未知函数满足关系式:对(对(1 1)式两端积分得:)式两端积分得:代入(代入(3 3)得)得C1 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值回答什么是微分方程:n建立关于未知变量、建立关于未知变量、n未知变量的导数以及未知变量的导数以及n自变量的方程自变量的方程 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二、微分方程的解法二、微分方程的解法积分方法,分离变量法积分方法,分离变量法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值可分离变量的微分方程可分离变量的微分方程可分离变量的微分方程可分离变量的微分方程.解法解法为微分方程的解为微分方程的解.分离变量法分离变量法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例1 1 求解微分方程求解微分方程解解分离变量分离变量两端积分两端积分典型例题典型例题资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值过定点的积分曲线过定点的积分曲线;一阶一阶:二阶二阶:过定点且在定点的切线的斜率为定值的积分曲线过定点且在定点的切线的斜率为定值的积分曲线.初值问题初值问题:求微分方程满足初始条件的解的问题求微分方程满足初始条件的解的问题.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例2.解初值问题解解:分离变量得两边积分得即由初始条件得 C=1,(C 为任意常数)故所求特解为资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值三、建立微分方程数学模型三、建立微分方程数学模型1、简单的数学模型、简单的数学模型2、复杂的数学模型、复杂的数学模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值1、简单的数学模型、简单的数学模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 利用微分方程求实际问题中未知函数的一般步骤是:利用微分方程求实际问题中未知函数的一般步骤是:(1)(1)分析问题,设所求未知函数,建立微分方分析问题,设所求未知函数,建立微分方程,确定初始条件;程,确定初始条件;(2)(2)求出微分方程的通解;求出微分方程的通解;(3)(3)根据初始条件确定通解中的任意常数,求根据初始条件确定通解中的任意常数,求出微分方程相应的特解出微分方程相应的特解 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 实际问题需寻求某个变量实际问题需寻求某个变量y 随另一变量随另一变量 t 的的变化规律变化规律:y=y(t).直接求直接求很困难很困难 建立关于未知变量、建立关于未知变量、未知变量的导数以及未知变量的导数以及自变量的方程自变量的方程 建立变量能满足建立变量能满足的微分方程的微分方程?哪一类问题哪一类问题资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值在工程实际问题中在工程实际问题中 “改变改变”、“变化变化”、“增加增加”、“减少减少”等关等关键词提示我们注意什么量在变化键词提示我们注意什么量在变化.关键词关键词“速率速率”,“增长增长”,“衰变衰变”,“边际边际的的”,常涉及到导数常涉及到导数.建建立立方方法法常常用用微微分分方方程程运用已知物理定律运用已知物理定律 利用平衡与增长式利用平衡与增长式 运用微元法运用微元法应用分析法应用分析法机理分机理分析法析法资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值建立微分方程模型时建立微分方程模型时应用已知物理定律,应用已知物理定律,可事半功倍可事半功倍一、运用已知物理定律一、运用已知物理定律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例1 1 铀的衰变规律问题:放射性元素由于不断地铀的衰变规律问题:放射性元素由于不断地有原子放射出微粒子变成其他元素,铀的含量有原子放射出微粒子变成其他元素,铀的含量不断的减少,这种现象称为衰变,由原子物理不断的减少,这种现象称为衰变,由原子物理学知道,铀的衰变速度与当时未衰变的原子的学知道,铀的衰变速度与当时未衰变的原子的含量含量M M成正比,已知成正比,已知t t0 0时刻铀的含量为时刻铀的含量为 ,求在衰变过程中铀的含量求在衰变过程中铀的含量M M(t t)随时间随时间t t的变化的变化规律。规律。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值铀的衰变速度就是铀的衰变速度就是 对时间对时间t的导数的导数 ,解解 因此,因此,由于衰变速度与其含量成正比,可知未知函数满足由于衰变速度与其含量成正比,可知未知函数满足关系式关系式:对上式两端积分得:对上式两端积分得:是衰变系数是衰变系数且初始条件且初始条件分离变量得分离变量得代入初始条件得代入初始条件得所以有,所以有,这就是铀的衰变规律这就是铀的衰变规律。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 例例2 一个较热的物体置于室温为一个较热的物体置于室温为180c的的房间内,该物体最初的温度是房间内,该物体最初的温度是600c,3分钟以后分钟以后降到降到500c.想知道它的温度降到想知道它的温度降到300c 需要多少时需要多少时间?间?10分钟以后它的温度是多少?分钟以后它的温度是多少?一、运用已知物理定律一、运用已知物理定律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 牛顿冷却(加热)定律:牛顿冷却(加热)定律:将温度为将温度为T的物体的物体放入处于常温放入处于常温 m 的介质中时,的介质中时,T的变化速率的变化速率正比于正比于T与周围介质的温度差与周围介质的温度差.分析分析:假设房间足够大,放入温度较低或较:假设房间足够大,放入温度较低或较高的物体时,室内温度基本不受影响,即室温高的物体时,室内温度基本不受影响,即室温分布均衡分布均衡,保持为保持为m,采用牛顿冷却定律是一个,采用牛顿冷却定律是一个相当好的近似相当好的近似.建立模型建立模型:设物体在冷却过程中的温度为设物体在冷却过程中的温度为T(t),t0,资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值“T的变化速率正比于的变化速率正比于T与周围介质的温度差与周围介质的温度差”翻译为翻译为数学语言数学语言建立微分方程建立微分方程其中参数其中参数k 0,m=18.求得一般解为求得一般解为资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 ln(Tm)=k t+c,代入条件代入条件:求得求得c=42,,最后得最后得 T(t)=18+42 ,t 0.结果结果:T(10)=18+42 =25.870,该物体温度降至该物体温度降至300c 需要需要8.17分钟分钟.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二二.利用平衡与增长式利用平衡与增长式 许多研究对象在数量上常常表现出某种许多研究对象在数量上常常表现出某种不变不变的特性的特性,如封闭区域内的能量、货币量等,如封闭区域内的能量、货币量等.利用变量间的平衡与增长特性利用变量间的平衡与增长特性,可分析和建可分析和建立有关变量间的相互关系立有关变量间的相互关系.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值解解例例1 1 某车间体积为某车间体积为12000立方米立方米,开始时空气中含开始时空气中含有有 的的 ,为了降低车间内空气中为了降低车间内空气中 的的含量含量,用一台风量为每秒用一台风量为每秒2000立方米的鼓风机通立方米的鼓风机通入含入含 的的 的新鲜空气的新鲜空气,同时以同样的风同时以同样的风量将混合均匀的空气排出量将混合均匀的空气排出,问鼓风机开动问鼓风机开动6分钟分钟后后,车间内车间内 的百分比降低到多少的百分比降低到多少?设鼓风机开动后设鼓风机开动后 时刻时刻 的含量为的含量为在在 内内,的通入量的通入量的排出量的排出量资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值的通入量的通入量的排出量的排出量的改变量的改变量6分钟后分钟后,车间内车间内 的百分比降低到的百分比降低到资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值二二.利用平衡与增长式利用平衡与增长式 例例2 2 简单人口增长模型简单人口增长模型 对某地区时刻对某地区时刻 t 的人口总数的人口总数N(t),除考虑个,除考虑个体的体的出生、死亡出生、死亡,再进一步考虑迁入与迁出,再进一步考虑迁入与迁出的影响的影响.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 在很短的时间段在很短的时间段t 内内,关于关于N(t)变化的一个变化的一个最简单的模型是:最简单的模型是:t时间内的人口增长量时间内的人口增长量=t内出生人口数内出生人口数t内死亡人口数内死亡人口数+t内迁入人口数内迁入人口数t内迁出人口数内迁出人口数 t时间内的净改变量时间内的净改变量=t时间内输入量时间内输入量t时间内输出量时间内输出量 般般化化更更一一基本模型基本模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值三三.微元法微元法 基本思想基本思想:通过分析研究对象的有关变量在通过分析研究对象的有关变量在 一个很短时间内的变化情况一个很短时间内的变化情况.资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值例例 一个高为一个高为2米的球体容器里盛了一半米的球体容器里盛了一半的水,水从它的底部小孔流出,小孔的横截面的水,水从它的底部小孔流出,小孔的横截面积为积为1 1平方厘米平方厘米.试求放空容器所需要的时间试求放空容器所需要的时间.2米对孔口的流速做两条假设对孔口的流速做两条假设:1t 时刻的流速时刻的流速v 依赖于依赖于此刻容器内水的高度此刻容器内水的高度h(t).2 整个放水过程无能整个放水过程无能量损失。量损失。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值分析分析:放空容器放空容器?容器内水的体积为零容器内水的体积为零容器内水的高度为零容器内水的高度为零 模型建立:模型建立:由水力学知:水从孔口流出的由水力学知:水从孔口流出的流量流量Q为通过为通过“孔口横截面的水的体积孔口横截面的水的体积V对时对时间间t 的变化率的变化率”,即即资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值S孔口横截面积(单位:平方厘米)孔口横截面积(单位:平方厘米)h(t)水面高度(单位:厘米)水面高度(单位:厘米)t时间(单位:秒)时间(单位:秒)当当S=1平方厘米平方厘米,有有h(t)h+hr1r2水位降低水位降低体积变化体积变化资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 在在t,t+t 内,内,水面高度水面高度 h(t)降至降至h+h(h10ti 11-1/i0t 1di/dt 1/i(t)先升后降至先升后降至0P2:s01/i(t)单调降至单调降至01/阈值阈值P3P4P2S0资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型4SIR模型模型预防传染病蔓延的手段预防传染病蔓延的手段 (日接触率日接触率)卫生水平卫生水平 (日日治愈率治愈率)医疗水平医疗水平 传染病不蔓延的条件传染病不蔓延的条件s01/的估计的估计 降低降低 s0提高提高 r0 提高阈值提高阈值 1/降低降低 (=/),群体免疫群体免疫资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型4SIR模型模型被传染人数的估计被传染人数的估计记被传染人数比例记被传染人数比例x 03)经济增长的条件经济增长的条件资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值劳动力增长率小于初始投资增长率劳动力增长率小于初始投资增长率每个劳动力的产值每个劳动力的产值 Z(t)=Q(t)/L(t)增增长长dZ/dt03)经济增长的条件经济增长的条件资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值3 正规战与游击战正规战与游击战战争分类:正规战争,游击战争,混合战争战争分类:正规战争,游击战争,混合战争只考虑双方兵力多少和战斗力强弱只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例领域的实际问题提供了可借鉴的示例第一次世界大战第一次世界大战Lanchester提出预测战役结局的模提出预测战役结局的模型型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值一般模型一般模型 每方战斗减员率取决于双方的兵力和战斗力每方战斗减员率取决于双方的兵力和战斗力 每方非战斗减员率与本方兵力成正比每方非战斗减员率与本方兵力成正比 甲乙双方的增援率为甲乙双方的增援率为u(t),v(t)f,g 取决于战争类型取决于战争类型x(t)甲方兵力,甲方兵力,y(t)乙方兵力乙方兵力模型模型假设假设模型模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值正规战争模型正规战争模型 甲方战斗减员率只取决于乙方的兵力和战斗力甲方战斗减员率只取决于乙方的兵力和战斗力双方均以正规部队作战双方均以正规部队作战 忽略非战斗减员忽略非战斗减员 假设没有增援假设没有增援f(x,y)=ay,a 乙方每个士兵的杀乙方每个士兵的杀伤率伤率a=ry py,ry 射击率,射击率,py 命中命中率率资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值0正规战争模型正规战争模型为判断战争的结局,不求为判断战争的结局,不求x(t),y(t)而在相平面上讨论而在相平面上讨论 x 与与 y 的的关系关系平方律平方律 模型模型乙方胜乙方胜资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值游击战争模型游击战争模型双方都用游击部队作战双方都用游击部队作战 甲方战斗减员率还随着甲方兵力的增加而增加甲方战斗减员率还随着甲方兵力的增加而增加 忽略非战斗减员忽略非战斗减员 假设没有增援假设没有增援f(x,y)=cxy,c 乙方每个士兵的杀伤乙方每个士兵的杀伤率率c=ry pyry射击率射击率py 命中率命中率py=sry/sxsx 甲方活动面积甲方活动面积sry 乙方射击有效面积乙方射击有效面积资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值0游击战争模型游击战争模型线性律线性律 模型模型资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值0混合战争模型混合战争模型甲方为游击部队,乙方为正规部队甲方为游击部队,乙方为正规部队乙方必须乙方必须10倍于甲方的兵力倍于甲方的兵力设设 x0=100,rx/ry=1/2,px=0.1,sx=1(km2),sry=1(m2)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值4 药物在体内的分布与排除药物在体内的分布与排除 药物进入机体形成药物进入机体形成血药浓度血药浓度(单位体积血液的药物量单位体积血液的药物量)血药浓度需保持在一定范围内血药浓度需保持在一定范围内给药方案设计给药方案设计 药物在体内吸收、分布和排除过程药物在体内吸收、分布和排除过程 药物动力学药物动力学 建立建立房室模型房室模型药物动力学的基本步骤药物动力学的基本步骤 房室房室机体的一部分,药物在一个房室内均匀机体的一部分,药物在一个房室内均匀分布分布(血药浓度为常数血药浓度为常数),在房室间按一定规律转移,在房室间按一定规律转移 本节讨论本节讨论二室模型二室模型中心室中心室(心、肺、肾等心、肺、肾等)和和周边室周边室(四肢、肌肉等四肢、肌肉等)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 中心室中心室周边室周边室给药给药排除排除模型假设模型假设 中心室中心室(1)和周边室和周边室(2),容积不变容积不变 药物在房室间转移速率及向体外排除速率,药物在房室间转移速率及向体外排除速率,与该室血药浓度成正比与该室血药浓度成正比 药物从体外进入中心室,在二室间药物从体外进入中心室,在二室间相互转移相互转移,从中心室排出体外从中心室排出体外模型建立模型建立资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值线性常系数线性常系数非齐次方程非齐次方程对应齐次对应齐次方程通解方程通解模型建立模型建立资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值几种常见的给药方式几种常见的给药方式1.快速静脉注射快速静脉注射t=0 瞬时瞬时注射剂量注射剂量D0的药物进入中心室的药物进入中心室,血血药浓度立即为药浓度立即为D0/V1给药速率给药速率 f0(t)和初始条件和初始条件资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值2.恒速静脉滴注恒速静脉滴注t T,c1(t)和和 c2(t)按指数规律趋于按指数规律趋于零零药物以速率k0进入中心室0Tt资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值吸收室中心室3.口服或肌肉注射口服或肌肉注射相当于药物相当于药物(剂量剂量D0)先进入吸收室,吸收后进入中心室先进入吸收室,吸收后进入中心室吸收室药量吸收室药量x0(t)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值参数估计参数估计各种给药方式下的各种给药方式下的 c1(t),c2(t)取决于参数取决于参数k12,k21,k13,V1,V2t=0快速静脉注射快速静脉注射D0,在在ti(i=1,2,n)测得测得c1(ti)由较大的由较大的 用最小二乘法定用最小二乘法定A A,由较小的由较小的 用最小二乘法定用最小二乘法定B,资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值参数估计参数估计进入中心室的药物全部排除进入中心室的药物全部排除资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 过滤嘴的作用与它的材料和长度有什么关系过滤嘴的作用与它的材料和长度有什么关系 人体吸入的毒物量与哪些因素有关,其中人体吸入的毒物量与哪些因素有关,其中哪些因素影响大,哪些因素影响小。哪些因素影响大,哪些因素影响小。模型模型分析分析 分析吸烟时毒物进入人体的过程,建立吸分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。烟过程的数学模型。设想一个设想一个“机器人机器人”在典型环境下吸烟,在典型环境下吸烟,吸烟方式和外部环境认为是不变的。吸烟方式和外部环境认为是不变的。问题问题5 香烟过滤嘴的作用香烟过滤嘴的作用资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型假设假设定性分析定性分析1)l1烟草长,烟草长,l2过滤嘴长,过滤嘴长,l=l1+l2,毒物量毒物量M均匀分布,密度均匀分布,密度w0=M/l12)点燃处毒物随烟雾进入空气和沿香烟穿)点燃处毒物随烟雾进入空气和沿香烟穿行的数量比是行的数量比是a:a,a+a=13)未点燃的烟草和过滤嘴对随烟雾穿行的)未点燃的烟草和过滤嘴对随烟雾穿行的毒物的毒物的(单位时间单位时间)吸收率分别是吸收率分别是b和和 4)烟雾沿香烟穿行速度是常数)烟雾沿香烟穿行速度是常数v,香烟燃,香烟燃烧速度是常数烧速度是常数u,v uQ 吸一支烟毒物进入人体总量吸一支烟毒物进入人体总量资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模模型型建建立立0t=0,x=0,点燃香烟,点燃香烟q(x,t)毒物流毒物流量量w(x,t)毒物密毒物密度度1)求求q(x,0)=q(x)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值t时刻,香烟燃至时刻,香烟燃至 x=ut1)求求q(x,0)=q(x)2)求求q(l,t)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值3)求求w(ut,t)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值4)计算计算 Q资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值结果结果分析分析烟草烟草为什么有作用为什么有作用?1)Q与与a,M成正比,成正比,aM是毒物集中在是毒物集中在x=l 处的吸入量处的吸入量2)过滤嘴因素,过滤嘴因素,,l2 负指数负指数作用作用是毒物集中在是毒物集中在x=l1 处的吸入量处的吸入量3)(r)烟草的吸收作烟草的吸收作用用b,l1 线性线性作作用用资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值带过滤嘴带过滤嘴不带过滤嘴不带过滤嘴结果结果分析分析4)与另一支不带过滤嘴的香烟比较,与另一支不带过滤嘴的香烟比较,w0,b,a,v,l 均相同,吸至均相同,吸至 x=l1扔掉扔掉提高提高 -b 与加长与加长l2,效果相,效果相同同资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值6 人口预测和控制人口预测和控制 年龄分布对于人口预测的重要性年龄分布对于人口预测的重要性 只考虑自然出生与死亡,不计迁移只考虑自然出生与死亡,不计迁移人口人口发展发展方程方程资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值人口发展方程人口发展方程一阶偏微分方程一阶偏微分方程资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值人口发展方程人口发展方程已知函数(人口调查)已知函数(人口调查)生育率(控制人口手段)生育率(控制人口手段)0tr资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值生育率的分解生育率的分解 总和生育率总和生育率h生育模生育模式式0资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值人口发展方程和生育率人口发展方程和生育率总和生育率总和生育率控制生育的多少控制生育的多少生育模式生育模式控制生育的早晚和疏密控制生育的早晚和疏密 正反馈系统正反馈系统 滞后作用很大滞后作用很大资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值人口指数人口指数1)人口总数)人口总数2)平均年龄)平均年龄3)平均寿命)平均寿命t时刻出生的人,死亡率按时刻出生的人,死亡率按 (r,t)计算的平均存活时间计算的平均存活时间4)老龄化指数)老龄化指数控制生育率控制生育率控制控制 N(t)不过大不过大控制控制 (t)不过高不过高资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值7 烟雾的扩散与消失烟雾的扩散与消失现象现象和和问题问题炮弹在空中爆炸,烟雾向四周扩散,形成圆形不透光区域。炮弹在空中爆炸,烟雾向四周扩散,形成圆形不透光区域。不透光区域不断扩大,然后区域边界逐渐明亮,区域缩小,最不透光区域不断扩大,然后区域边界逐渐明亮,区域缩小,最后烟雾消失。后烟雾消失。建立模型描述烟雾扩散和消失过程,分析消失时间与各因素的建立模型描述烟雾扩散和消失过程,分析消失时间与各因素的关系。关系。问题问题分析分析无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟雾浓度的变化。雾浓度的变化。观察的烟雾消失与烟雾对光线的吸收,以及仪器对明暗的灵敏观察的烟雾消失与烟雾对光线的吸收,以及仪器对明暗的灵敏程度有关。程度有关。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型模型假设假设1)烟雾在无穷空间扩散,不受大地和风)烟雾在无穷空间扩散,不受大地和风的影响;扩散服从热传导定律。的影响;扩散服从热传导定律。2)光线穿过烟雾时光强的减少与烟雾浓)光线穿过烟雾时光强的减少与烟雾浓度成正比;无烟雾的大气不影响光强。度成正比;无烟雾的大气不影响光强。3)穿过烟雾进入仪器的光线只有明暗之)穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。分,明暗界限由仪器灵敏度决定。模型模型建立建立1)烟雾浓度)烟雾浓度 的变化规律的变化规律热传导定律:单位时间通过单位法热传导定律:单位时间通过单位法向面积的流量与浓度梯度成正比向面积的流量与浓度梯度成正比 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值曲面积分的奥氏公式曲面积分的奥氏公式1)烟雾浓度)烟雾浓度 的变化规律的变化规律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 初始条件初始条件Q炮弹释放的烟雾总量炮弹释放的烟雾总量 单位强度的点源函数单位强度的点源函数 对任意对任意t,C的等值面是球面的等值面是球面 x2+y2+z2=R2;RC 仅当仅当 t,对任意点对任意点(x,y,z),C01)烟雾浓度)烟雾浓度 的变化规律的变化规律资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值2)穿过烟雾光强的变化规律)穿过烟雾光强的变化规律光强的减少与烟光强的减少与烟雾浓度成正比雾浓度成正比资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值3)仪器灵敏度与烟雾明暗界限)仪器灵敏度与烟雾明暗界限烟雾浓度连续变化烟雾浓度连续变化烟雾中光强连续变化烟雾中光强连续变化仪器仪器z-设光源在设光源在z=-,仪器在仪器在z=,则观测到的则观测到的明暗界限为明暗界限为不透光区域有扩大、不透光区域有扩大、缩小、消失的过程缩小、消失的过程穿过烟雾进入仪器的光线只有明暗之穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。分,明暗界限由仪器灵敏度决定。不透光区域边界不透光区域边界资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值4)不透光区域边界的变化规律)不透光区域边界的变化规律对任意对任意t,不透光区域边界是圆周不透光区域边界是圆周不透光区域不透光区域边界半径边界半径资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值r(t)rm0t1t2t结果分析结果分析观测到不透光区域边界达到最大的观测到不透光区域边界达到最大的时刻时刻t1,可以预报烟雾消失的时刻,可以预报烟雾消失的时刻t2资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值5.8 万有引力定律的发现万有引力定律的发现背景背景航海业发展航海业发展天文观测精确天文观测精确“地心说地心说”动动摇摇哥白尼:哥白尼:“日心说日心说”伽里略:落体运动伽里略:落体运动开普勒:行星运动三定律开普勒:行星运动三定律变速运动的计算方法变速运动的计算方法牛顿:一切运动有力学原因牛顿:一切运动有力学原因牛顿运动三定律牛顿运动三定律牛顿:研究变速运动,发明微积分(流数法)牛顿:研究变速运动,发明微积分(流数法)开普勒三定律开普勒三定律牛顿运动第二定律牛顿运动第二定律万有引力定律万有引力定律自然科学之数学原理自然科学之数学原理(1687)资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型假设模型假设极坐标系极坐标系(r,)太阳太阳(0,0)1.行星轨行星轨道道a长半轴长半轴,b短半轴短半轴,e离心离心率率3.行星运行周期行星运行周期 T行星位置:向径行星位置:向径O(太阳太阳)P(行星行星)r2.单位时间单位时间 扫过面积为常数扫过面积为常数 Am 行星质行星质量量 绝对常数绝对常数4.行星运行受力行星运行受力 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型建立模型建立O(太阳太阳)P(行星行星)r向径向径 的基向量的基向量资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值模型建立模型建立万有引力定律万有引力定律需证明需证明 4A2/p=kM(与哪一颗行星无关)(与哪一颗行星无关)A单位时间单位时间 扫过面积扫过面积O(太阳太阳)P(行星行星)r(习题习题)lp/22=pA

    注意事项

    本文(数学建模-微分方程模型ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开