2016年《南方新课堂·高考总复习》数学(理科)-第五章-第4讲-数列的求和ppt课件.ppt
-
资源ID:68513608
资源大小:586KB
全文页数:22页
- 资源格式: PPT
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2016年《南方新课堂·高考总复习》数学(理科)-第五章-第4讲-数列的求和ppt课件.ppt
在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第4讲数列的求和在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确1掌握等差数列、等比数列的求和公式2了解一般数列求和的几种方法在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确1等差、等比数列的求和在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2一般数列求和的常用方法(1)分组求和:把一个数列分成几个可以直接求和的数列(2)裂项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项,再求和常见的拆项公式有:在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和(4)倒序相加:如等差数列前 n 项和公式的推导在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2 若数列 an 满足 a1 1,an12an(n N*),则 a5 _,前 8 项的和 S8_(用数字作答)B16255在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确_.为 10,则项数 n_.120在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点 1 公式或分组法求和在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【规律方法】若一个数列是由等比数列和等差数列组成,则求和时,可采用分组求和,即先分别求和,再将各部分合并.在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】1(2013 年重庆)设数列an满足 a11,an13an,nN*.(1)求an的通项公式及前 n 项和 Sn;(2)已知bn是等差数列,前 n 项和为 Tn,且 b1a2,b3a1a2a3,求 T20.解:(1)由题设知,an是首项为 1,公比为 3 的等比数列,在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点2裂项相消法求和例2:已知数列an的前 n 项和 Snn2n,nN*.(1)求数列an的通项公式;(2)证明:对一切正整数 n,有1a1(a11)1a2(a21)(1)解:当n2时,anSnSn1n2n(n1)2(n1)2n.又a1221,an2n(nN*)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【规律方法】裂项相消法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项,再求和在应用裂项相消法时,要注意消项的规律具有对称性,即前面在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确考点 3 错位相减法求和在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确【互动探究】在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(2)由bn3n1知,an(2n1)3n1,于是数列an的前n项和Sn130331532(2n1)3n1,3Sn131332(2n3)3n1(2n1)3n,两式相减,得2Sn12(31323n1)(2n1)3n2(2n2)3n.Sn(n1)3n1.