小学数学知识点例题精讲《公式运用》教师版.docx
公式法计算知识点拨一、常用公式1. ;2. ;3. ;4. ;5. 等比数列求和公式:();6. 平方差公式:;7. 完全平方公式:,;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的倍,两条公式也可以合写在一起:为便于记忆,可形象的叙述为:“首平方,尾平方,倍乘积在中央”二、常用技巧1. ;2. ;3. , ,;4. ,其中例题精讲一、前项和【例 1】【考点】公式法之求和公式 【难度】2星 【题型】计算【解析】【答案】【巩固】【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 原式【答案】【例 2】 计算:【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 原式 【答案】【例 3】 计算:【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 原式 【答案】【巩固】 计算:_【考点】公式法之求和公式 【难度】3星 【题型】填空【解析】 与公式相比,缺少偶数项,所以可以先补上偶数项原式【答案】【例 4】 计算:【考点】公式法之求和公式 【难度】3星 【题型】填空【解析】 原式【答案】【例 5】 计算: .【考点】公式法之求和公式 【难度】3星 【题型】填空【关键词】西城实验【解析】 原式 其中也可以直接根据公式得出【答案】【例 6】 计算:【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 分拆 (),()再用公式原式 【答案】【例 7】 对自然数和,规定,例如,那么: _; _【考点】公式法之求和公式 【难度】3星 【题型】填空【解析】 原式原式【答案】 【巩固】 看规律 ,试求【考点】公式法之求和公式 【难度】3星 【题型】计算【关键词】人大附中【解析】 原式【答案】【例 8】 计算: 【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 法一:利用等比数列求和公式.原式法二:错位相减法设则,整理可得法三:本题与例3相比,式子中各项都是成等比数列,但是例3中的分子为3,与公比4差1,所以可以采用“借来还去”的方法,本题如果也要采用“借来还去”的方法,需要将每一项的分子变得也都与公比差1由于公比为3,要把分子变为2,可以先将每一项都乘以2进行算,最后再将所得的结果除以2即得到原式的值由题设,则运用“借来还去”的方法可得到, 整理得到【答案】【例 9】 计算的值.(已知,)【考点】公式法之求和公式 【难度】3星 【题型】计算【解析】 注意到式子的特点是从第一个加数开始,每一个加数比前一个加数的指数减少,的指数增加.所以每一个加数是前一个加数的倍,如果将题中加数按原来的顺序排列起来就是一个公比为的等比数列,于是按照错位减法进行运算即可.【解析】 记, ,那么,即原式的值为.【答案】【例 10】 【考点】公式法之求和公式 【难度】3星 【题型】填空【关键词】浙江省,小学数学活动课夏令营【解析】 原式【答案】【解析】 计算: 【考点】公式法之求和公式 【难度】3星 【题型】填空【解析】 原式【答案】【解析】【考点】公式法之求和公式 【难度】3星 【题型】填空【解析】 原式【答案】【例 11】 计算:【考点】公式法之求和公式 【难度】4星 【题型】计算【解析】 设算式的值为,那么,即,故,则,所以,【答案】二、平方差与完全平方公式【例 12】 _; _【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】填空【关键词】浙江省,小学数学活动课夏令营【解析】 观察可知31415925和31415927都与31415926相差1,设,原式原式【答案】 【巩固】 【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 方法一:原式 方法二:原式【答案】【巩固】 【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 原式【答案】【巩固】 计算: .【考点】公式法之平方差公式与完全平方公式 【难度】3星 【题型】填空【关键词】走美杯,6年级,决赛【解析】 题目分析:答案为100000.记原式为X,则10X=314×314+628×686+686×686=3142+2×314×686+6862=(314+686)2=1000000,所以,X=100000.【答案】【例 13】 有一串数,它们是按一定规律排列的,那么其中第个数与第个数相差多少?【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】填空【解析】 这串数中第个数是,而第个数是,它们相差【答案】【巩固】 代表任意数字,若,这个公式在数学上称为平方差公式根据公式,你来巧算下列各题吧 【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】计算【解析】 这个公式可以给我们的计算带来很多便利,在以后的奥数学习中会经常遇到,同学们最好记住哦.我们就依据公式来进行下面的计算:【答案】 【例 14】 计算: 【考点】公式法之平方差公式与完全平方公式 【难度】3星 【题型】填空【关键词】迎春杯,中年级组,决赛【解析】 本题可以直接计算出各项乘积再求和,也可以采用平方差公式原式 其中可以直接计算,但如果项数较多,应采用公式进行计算【答案】【例 15】 【考点】公式法之平方差公式与完全平方公式 【难度】2星 【题型】填空【关键词】迎春杯,初赛【解析】 原式【答案】三、公式综合运用【例 16】 计算: 【考点】公式法之综合运用 【难度】3星 【题型】填空【关键词】仁华学校【解析】 观察可知式子中每一项乘积的被乘数与乘数依次成等差数列,被乘数依次为1,3,5,99,乘数依次为4,7,10,151,根据等差数列的相关知识,被乘数可以表示为,乘数可以表示为,所以通项公式为所以,原式另解:如果不进行通项归纳,由于式子中每一项的被乘数与乘数的差是不相等,可以先将这个差变为相等再进行计算原式而和都是我们非常熟悉的,所以原式小结:从上面的计算过程中可以看出,而,所以有【答案】【例 17】 计算: 【考点】公式法之综合运用 【难度】4星 【题型】填空【解析】 ,所以,所以原式【答案】【例 18】 计算:【考点】公式法之综合运用 【难度】3星 【题型】计算【关键词】北京二中,入学测试【解析】 原式【答案】【巩固】 计算【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 这个题目重新整理得:【答案】【巩固】 计算:【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 做这道题的时候,可能有些以前记住了20以内平方数的同学就高兴了,但是其实并不需要,大家看,利用平方差公式:,于是,原式【答案】【例 19】【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 原式【答案】【例 20】 计算: 【考点】公式法之综合运用 【难度】3星 【题型】填空【解析】 原式【答案】【巩固】 计算: 【考点】公式法之综合运用 【难度】3星 【题型】填空【解析】 观察发现式子中每相乘的两个数的和都是相等的,可以采用平方差公式原式【答案】【巩固】【考点】公式法之综合运用 【难度】3星 【题型】填空【关键词】学而思杯,4年级【解析】 原式 【答案】【例 21】 计算:【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 原式【答案】【巩固】 计算: 【考点】公式法之综合运用 【难度】3星 【题型】填空【解析】 原式【答案】【例 22】 计算:【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 原式 【答案】【例 23】 计算:【考点】公式法之综合运用 【难度】3星 【题型】计算【解析】 原式【答案】11