欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    【2022高中数学精品教案】2.1.2 两条直线平行和垂直的判定 教学设计-人教A版高中数学选择性必修第一册.docx

    • 资源ID:68566031       资源大小:1.05MB        全文页数:11页
    • 资源格式: DOCX        下载积分:4.6金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.6金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【2022高中数学精品教案】2.1.2 两条直线平行和垂直的判定 教学设计-人教A版高中数学选择性必修第一册.docx

    2.1.2 两条直线平行和垂直的判定 本节课选自2019人教A版高中数学选择性必修第一册第二章直线和圆的方程,本节课主要学习两条直线平行和垂直的判定。直线的平行和垂直是两条直线的重要位置关系,它们的判定在初中运用几何法已经进行了学习,而在坐标系下,运用代数方法即坐标法,是一种新的观点和方法,需要学生理解和感悟。两直线平行和垂直都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明.课程目标学科素养A. 理解两条直线平行与垂直的条件.B.能根据斜率判定两条直线平行或垂直.C.能利用两直线平行或垂直的条件解决问题.1.数学抽象:两条直线平行与垂直的条件2.逻辑推理:根据斜率判定两条直线平行或垂直3.数学运算:利用两直线平行或垂直的条件解决问题4.直观想象:直线斜率的几何意义,及平行与垂直的几何直观1.教学重点:理解两条直线平行或垂直的判断条件 2.教学难点:会利用斜率判断两条直线平行或垂直多媒体教学过程教学设计意图核心素养目标一、情境导学 过山车是一项富有刺激性的娱乐项目.实际上,过山车的运动包含了许多数学和物理学原理.过山车的两条铁轨是相互平行的轨道,它们靠着一根根巨大的柱形钢筋支撑着,为了使设备安全,柱子之间还有一些小的钢筋连接,这些钢筋有的互相平行,有的互相垂直,你能感受到过山车中的平行和垂直吗?两条直线的平行与垂直用什么来刻画呢?二、探究新知(一)、两条直线平行与斜率之间的关系设两条不重合的直线l1,l2,倾斜角分别为1,2,斜率存在时斜率分别为k1,k2.则对应关系如下:前提条件1=290°1=2=90°对应关系l1l2k1=k2l1l2两直线斜率都不存在图示点睛:若没有指明l1,l2不重合,那么k1=k2l1l2,或l1与l2重合,用斜率证明三点共线时,常用到这一结论.1.对于两条不重合的直线l1,l2,“l1l2”是“两条直线斜率相等”的什么条件?答案:必要不充分条件,如果两不重合直线斜率相等,则两直线一定平行;反过来,两直线平行, 有可能两直线斜率均不存在.2.已知直线l1经过两点(-1,-2),(-1,4),直线l2经过两点(2,1),(x,6),且l1l2,则x=. 解析:由题意知l1x轴.又l1l2,所以l2x轴,故x=2.答案:23思考辨析(1)若两条直线的斜率相等,则这两条直线平行()(2)若l1l2,则k1k2.()(3)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直()(4)若两条直线的斜率都不存在且两直线不重合,则这两条直线平行()答案:(1)×也可能重合(2)×l1l2,其斜率不一定存在(3)×不一定垂直,只有另一条直线斜率为0时才垂直(4) (二)、两条直线垂直与斜率之间的关系 对应关系l1与l2的斜率都存在,分别为k1,k2,则l1l2k1·k2=-1l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是l1l2.图示点睛:“两条直线的斜率之积等于-1”是“这两条直线垂直”的充分不必要条件.因为两条直线垂直时,除了斜率之积等于-1,还有可能一条直线的斜率为0,另一条直线的斜率不存在.4.若直线l1,l2的斜率是方程x2-3x-1=0的两根,则l1与l2的位置关系是. 解析:由根与系数的关系,知k1k2=-1,所以l1l2.答案:l1l2三、典例解析例1 判断下列各小题中的直线l1与l2是否平行:(1)l1经过点A(-1,-2),B(2,1),l2经过点M(3,4),N(-1,-1);(2)l1的斜率为1,l2经过点A(1,1),B(2,2);(3)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0);(4)l1经过点A(-3,2),B(-3,10),l2经过点M(5,-2),N(5,5).思路分析: 斜率存在的直线求出斜率,利用l1l2k1=k2进行判断,若两直线斜率都不存在,可通过观察并结合图形得出结论.解:(1)k1=1-(-2)2-(-1)=1,k2=-1-4-1-3=54,k1k2,l1与l2不平行.(2)k1=1,k2=2-12-1=1,k1=k2,故l1l2或l1与l2重合.(3)k1=0-11-0=-1,k2=0-32-(-1)=-1,则有k1=k2.又kAM=3-1-1-0=-2-1,则A,B,M不共线.故l1l2.(4)由已知点的坐标,得l1与l2均与x轴垂直且不重合,故有l1l2.延伸探究 已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若ABMN,则m的值为. 解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存在,MN与AB不平行,不合题意;当m=-1时,直线MN的斜率不存在,而直线AB的斜率存在,MN与AB不平行,不合题意;当m-2,且m-1时,kAB=4-mm-(-2)=4-mm+2,kMN=3-1m+2-1=2m+1.因为ABMN,所以kAB=kMN,即4-mm+2=2m+1,解得m=0或m=1.当m=0或1时,由图形知,两直线不重合.综上,m的值为0或1.答案:0或1 判断两直线是否平行的步骤例2(1)直线l1经过点A(3,2),B(3,-1),直线l2经过点M(1,1),N(2,1),判断l1与l2是否垂直;(2)已知直线l1经过点A(3,a),B(a-2,3),直线l2经过点C(2,3),D(-1,a-2),若l1l2,求a的值.思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直.(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l1的斜率不存在,直线l2的斜率为0,所以l1l2.(2)由题意,知直线l2的斜率k2一定存在,直线l1的斜率可能不存在.当直线l1的斜率不存在时,3=a-2,即a=5,此时k2=0,则l1l2,满足题意.当直线l1的斜率k1存在时,a5,由斜率公式,得k1=3-aa-2-3=3-aa-5,k2=a-2-3-1-2=a-5-3.由l1l2,知k1k2=-1,即3-aa-5×a-5-3=-1,解得a=0.综上所述,a的值为0或5. 两直线垂直的判定方法 两条直线垂直需判定k1k2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A(-1,3),B(4,2),以AB为直径作圆,与x轴有交点P,则交点P的坐标是. 解析:设以AB为直径的圆与x轴的交点为P(x,0).kPB0,kPA0,kPA·kPB=-1,即0-3x+1·0-2x-4=-1,(x+1)(x-4)=-6,即x2-3x+2=0,解得x=1或x=2.故点P的坐标为(1,0)或(2,0).答案:(1,0)或(2,0)例3 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t>0.试判断四边形OPQR的形状.思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得kOP=t-01-0=t,kRQ=2-(2+t)-2t-(1-2t)=-t-1=t,kOR=2-0-2t-0=-1t,kPQ=2+t-t1-2t-1=2-2t=-1t.所以kOP=kRQ,kOR=kPQ,从而OPRQ,ORPQ.所以四边形OPQR为平行四边形.又kOP·kOR=-1,所以OPOR,故四边形OPQR为矩形.延伸探究1 将本例中的四个点,改为“A(-4,3),B(2,5),C(6,3),D(-3,0),顺次连接A,B,C,D四点,试判断四边形ABCD的形状.”由斜率公式可得kAB=5-32-(-4)=13,kCD=0-3-3-6=13,kAD=0-3-3-(-4)=-3,kBC=3-56-2=-12.所以kAB=kCD,由图可知AB与CD不重合,所以ABCD,由kADkBC,所以AD与BC不平行.又因为kAB·kAD=13×(-3)=-1,所以ABAD,故四边形ABCD为直角梯形.解:由题意A,B,C,D四点在平面直角坐标系内的位置如图,延伸探究2 将本例改为“已知矩形OPQR中四个顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),试求顶点R的坐标.”解:因为OPQR为矩形,所以OQ的中点也是PR的中点.设R(x,y),则由中点坐标公式知0+1-2t2=1+x2,0+2+t2=t+y2,解得x=-2t,y=2.所以R点的坐标是(-2t,2).利用两条直线平行或垂直来判断图形形状的步骤点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解金题典例 已知点A(0,3),B(-1,0),C(3,0),且四边形ABCD为直角梯形,求点D的坐标.思路分析:分析题意可知,AB、BC都不可作为直角梯形的直角边,所以要考虑CD是直角梯形的直角边和AD是直角梯形的直角边这两种情况;设所求点D的坐标为(x,y),若CD是直角梯形的直角边,则BCCD,ADCD,根据已知可得kBC=0,CD的斜率不存在,从而有x=3;接下来再根据kAD=kBC即可得到关于x、y的方程,结合x的值即可求出y,那么点D的坐标便不难确定了,同理再分析AD是直角梯形的直角边的情况.解:设所求点D的坐标为(x,y),如图所示,由于kAB=3,kBC=0,则kAB·kBC=0-1,即AB与BC不垂直,故AB、BC都不可作为直角梯形的直角边.若CD是直角梯形的直角边,则BCCD,ADCD,kBC=0,CD的斜率不存在,从而有x=3.又kAD=kBC,y-3x=0,即y=3.此时AB与CD不平行.故所求点D的坐标为(3,3).若AD是直角梯形的直角边,则ADAB,ADCD,kAD=y-3x,kCD=yx-3.由于ADAB,则y-3x·3=-1.又ABCD,yx-3=3.解上述两式可得x=185,y=95,此时AD与BC不平行.故所求点D的坐标为185,95.综上可知,使四边形ABCD为直角梯形的点D的坐标可以为(3,3)或185,95.反思感悟:先由图形判断四边形各边的关系,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.通过生活中的现实情境,提出问题,明确研究问题运用代数方法探究两直线平行与垂直问题,引导学生回顾初中两直线平行与垂直的几何知识,为探究运用斜率判断直线平行和垂直作知识上的准备。由坐标系中的直线,让学生理解直线倾斜角和斜率的概念。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。 通过典型例题的分析和解决,让学生加深对利用直线斜率判断两直线平行和垂直的方法,提升运用能力。发展学生数学抽象、直观想象、逻辑推理的核心素养。通过典例解析,进一步让理解运用直线斜率判断直线平行u垂直的方法,提升推理论证能力,进一步体会坐标法解决问题的基本思想。三、达标检测1下列说法正确的是()A若直线l1与l2倾斜角相等,则l1l2B若直线l1l2,则k1k21C若直线的斜率不存在,则这条直线一定平行于y轴D若两条直线的斜率不相等,则两直线不平行解析:A中,l1与l2可能重合;B中,l1,l2可能存在其一没斜率;C中,直线也可能与y轴重合;D正确,选D.答案 D2.若直线l1的斜率为a,l1l2,则直线l2的斜率为() A.1aB.aC.-1aD.-1a或不存在解析:若a0,则l2的斜率为-1a;若a=0,则l2的斜率不存在.答案:D 3.已知直线l1的倾斜角为45°,直线l1l2,且l2过点A(-2,-1)和B(3,a),则a的值为. 解析:由题意,得a-(-1)3-(-2)=1,即a=4.答案:4 4.已知ABC的三个顶点分别是A(2,2),B(0,1),C(4,3),点D(m,1)在边BC的高所在的直线上, 则实数m=. 解析:设直线AD,BC的斜率分别为kAD,kBC,由题意,得ADBC,则有kAD·kBC=-1,所以有1-2m-2·3-14-0=-1,解得m=52.答案:525.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)四点,判断四边形ABCD形状.解:kAB=13,kBC=-12,kCD=13,kAD=-3, 所以直线AD垂直于直线AB与CD,而且直线BC不平行于任何一条直线,所以四边形ABCD是直角梯形.通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结五、课时练通过总结,让学生进一步巩固本节所学内容,提高概括能力。 本课通过探究两直线平行或垂直的条件,力求培养学生运用已有知识解决新问题的能力,以及数形结合能力.通过对两直线平行与垂直的位置关系的研究,培养了学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.组织学生充分讨论、探究、交流,使学生自己发现规律,自己总结出两直线平行与垂直的判定依据,教师要及时引导、及时鼓励. 教师的授课的想办法降低教学难度,让学生能轻易接受

    注意事项

    本文(【2022高中数学精品教案】2.1.2 两条直线平行和垂直的判定 教学设计-人教A版高中数学选择性必修第一册.docx)为本站会员(yanj****uan)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开