欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    【2022高中数学精品教案】2.4.2 圆的一般方程 教学设计-人教A版高中数学选择性必修第一册.docx

    • 资源ID:68566605       资源大小:139.26KB        全文页数:9页
    • 资源格式: DOCX        下载积分:4.6金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.6金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【2022高中数学精品教案】2.4.2 圆的一般方程 教学设计-人教A版高中数学选择性必修第一册.docx

    2.4.2圆的一般方程本节课选自2019人教A版高中数学选择性必修第一册第二章直线和圆的方程,本节课主要学习圆的一般方程。本节内容是在学生学习了圆的标准方程基础上,进一步研究圆的一般方程,发现圆的方程特点,即为特殊的二元二次方程。明确圆的一般方程的特点,掌握圆的方程的算法及与圆有关的轨迹问题。在这一过程中,进一步体会数形结合的思想和方程思想,形成用代数的方法解决几何问题的能力。同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础。也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位。坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一。课程目标学科素养A.理解圆的一般方程及其特点.B.掌握圆的一般方程和标准方程的互化.C.会求圆的一般方程以及与圆有关的简单的轨迹方程问题1.数学抽象:二元二次方程与圆的一般方程 2.逻辑推理:圆的一般方程与标准方程的互化3.数学运算:求圆的一般方程4.数学建模:圆的一般方程的特点 重点:掌握圆的一般方程并会求圆的一般方程难点:与圆有关的简单的轨迹方程问题 多媒体教学过程教学设计意图核心素养目标一、 情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式. 请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.二、 探究新知例如,对于方程x2+y2-2x-4y+6=0,对其进行配方,得(x-1)2+(y-2)2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D2,-E2)为圆心,12D2+E2-4F为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得(x+D2)2+(y+E2)2=D2+E2-4F4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D2,-E2)(3)当D2+E2-4F<0时,方程不表示任何图形.1.二元二次方程要想表示圆,需x2和y2的系数相同且不为0,没有xy这样的二次项.2.几个常见圆的一般方程(1)过原点的圆的方程:x2+y2+Dx+Ey=0(D,E不全为0),(2)圆心在y轴上的圆的方程:x2+y2+Ey+F=0(E2-4F>0);(3)圆心在x轴上的圆的方程,x2+y2+Dx+F=0(D2-4F>0);(4)圆心在x轴上且过原点的圆的方程:x2+y2+Dx=0(D0);(5)圆心在y轴上且过原点的圆的方程:x2+y2+Ey=0(E0).1.圆x2+y2-6x=0的圆心坐标是. 答案:(3,0)2. 若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径的圆,则F=. 答案:43.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆需要满足哪些条件?答案:(1)A=C,且均不为0; (2)B=0;(3)D2+E2-4AF>0.三、 典例解析例1 判断方程x2+y2-4mx+2my+20m-20=0能否表示圆.若能表示圆,求出圆心和半径.思路分析:可直接利用D2+E2-4F>0是否成立来判断,也可把左端配方,看右端是否为大于零的常数.解:(方法1)由方程x2+y2-4mx+2my+20m-20=0可知D=-4m,E=2m,F=20m-20,D2+E2-4F=16m2+4m2-80m+80=20(m-2)2.因此,当m=2时,它表示一个点;当m2时,原方程表示圆,此时,圆的圆心为(2m,-m),半径为r=12D2+E2-4F=5|m-2|.(方法2)原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m=2时,它表示一个点;当m2时,原方程表示圆,此时,圆的圆心为(2m,-m), 半径为r=5|m-2|. 二元二次方程表示圆的判断方法 任何一个圆的方程都可化为x2+y2+Dx+Ey+F=0的形式,但形如x2+y2+Dx+Ey+F=0的方程不一定表示圆.判断它是否表示圆可以有以下两种方法:(1)计算D2+E2-4F,若其值为正,则表示圆;若其值为0,则表示一个点;若其值为负,则不表示任何图形.(2)将该方程配方为(x+D2)2+(y+E2)2=D2+E2-4F4,根据圆的标准方程来判断.跟踪训练1若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:(1)实数m的取值范围;(2)圆心坐标和半径.解:(1)据题意知D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,即4m2+4-4m2-20m>0,解得m<15,故m的取值范围为-,15.(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准方程为(x+m)2+(y-1)2=1-5m,故圆心坐标为(-m,1),半径r=1-5m.例2 圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.思路分析:由条件知,所求圆的圆心、半径均不明确,故设出圆的一般方程,用待定系数法求解.解:设所求圆的方程为x2+y2+Dx+Ey+F=0.圆C过A(1,2),B(3,4),D+2E+F=-5,3D+4E+F=-25.令y=0,得x2+Dx+F=0.设圆C与x轴的两个交点的横坐标为x1,x2,则x1+x2=-D,x1x2=F.|x1-x2|=6,(x1+x2)2-4x1x2=36,即D2-4F=36.由得D=12,E=-22,F=27,或D=-8,E=-2,F=7.故圆C的方程为x2+y2+12x-22y+27=0或x2+y2-8x-2y+7=0. 圆的方程的求法 求圆的方程时,如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r;如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D,E,F.跟踪训练2圆心在直线y=x上,且过点A(-1,1),B(3,-1)的圆的一般方程是 . 解析:设圆的方程为x2+y2+Dx+Ey+F=0,则圆心是(-D2,-E2),由题意知,-D2=-E2,2-D+E+F=0,10+3D-E+F=0,解得D=E=-4,F=-2,即所求圆的一般方程是x2+y2-4x-4y-2=0.答案:x2+y2-4x-4y-2=0 例3 已知等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么图形.思路分析:设出点C的坐标,根据|AB|=|AC|列出方程并化简. 解:设另一端点C的坐标为(x,y).依题意,得|AC|=|AB|.由两点间距离公式,得(x-4)2+(y-2)2=(4-3)2+(2-5)2=10,整理,得(x-4)2+(y-2)2=10.这是以点A(4,2)为圆心,以10为半径的圆,如图所示. 又因为A,B,C为三角形的三个顶点,所以A,B,C三点不共线,即点B,C不能重合,所以点C的横坐标x3,且点B,C不能为一直径的两端点,所以x+324,即点C的横坐标x5.故端点C的轨迹方程是(x-4)2+(y-2)2=10(x3,且x5),即另一个端点C的轨迹是以A(4,2)为圆心,10为半径的圆,但除去(3,5)和(5,-1)两点.变式: 求本例中线段AC中点M的轨迹方程. 解:设M(x,y),又A(4,2),M为线段AC的中点,C(2x-4,2y-2).点C在圆(x-4)2+(y-2)2=10(x3,且x5)上,(2x-4-4)2+(2y-2-2)2=10,(x-4)2+(y-2)2=52.由2x-43,得x72;由2x-45,得x92.中点M的轨迹方程为(x-4)2+(y-2)2=52(x72,且x92).求动点的轨迹方程的常用方法1.直接法:能直接根据题目提供的条件列出方程;2.代入法:找到所求动点与已知动点的关系,代入已知动点所在的方程.跟踪训练3 两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.解:以两定点A,B所在直线为x轴,线段AB的中垂线为y轴,建立直角坐标系,设A(-3,0),B(3,0),M(x,y),则|MA|2+|MB|2=26,(x+3)2+y2+(x-3)2+y2=26,化简得M点的轨迹方程为x2+y2=4跟踪训练4 已知圆(x+1)2+y2=2上动点A,x轴上定点B(2,0),将BA延长到M,使AM=BA,求动点M的轨迹方程.解:设A(x1,y1),M(x,y),AM=BA,且M在BA的延长线上,A为线段MB的中点,由中点坐标公式得x1=x+22,y1=y2,A在圆上运动,将点A的坐标代入圆的方程,得x+22+12+y22=2,化简得(x+4)2+y2=8,点M的轨迹方程为(x+4)2+y2=8. 跟踪训练5 已知两点P(-2,2),Q(0,2)以及一条直线l:y=x,设长为2 的线段AB在直线l移动,求直线PA与QB的交点M的轨迹方程.解:线段AB在直线y=x上移动,且|AB|=2,可设点A(a,a),B(a+1,a+1).直线PA的方程为y-2=a-2a+2(x+2)(a-2),直线QB的方程为y-2=a-1a+1x(a-1),当a=0时,直线PA与QB平行,两直线无交点,当a0时,直线PA与QB相交,设交点为M(x,y).由式可得a=x+y-2x-y+2,将其代入式,整理,得x2-y2+2x-2y+8=0,当a=-2或a=-1时,直线PA和QB的交点也满足,所求轨迹方程为x2-y2+2x-2y+8=0.通过对圆的标准方程的讨论,引出圆的一般方程,同时类比直线方程的多种形式,帮助学生认识圆的一般方程与二元二次方程的关系。学会联系旧知,制定解决问题的策略。通过对圆的一般方程的讨论,帮助学生总结圆的一般方程的特点。发展学生数学运算,数学抽象和数学建模的核心素养。 在典例分析和练习中掌握求圆的一般方程的基本方法,即:代数法与几何法。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。 通过与圆相关的轨迹问题的解决,提升学生数形结合,及方程思想,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。三、达标检测1.方程x2+y2-2x-4y+6=0表示的轨迹为() A.圆心为(1,2)的圆 B.圆心为(2,1)的圆 C.圆心为(-1,-2)的圆 D.不表示任何图形解析:因为x2+y2-2x-4y+6=0等价于(x-1)2+(y-2)2=-1,即方程无解,所以该方程不表示任何图形,故选D. 答案:D2.若圆x2+y2-2kx-4=0关于直线2x-y+3=0对称,则k等于() A.32B.-32C.3D.-3解析:由题意知,直线2x-y+3=0过圆心.圆心坐标为(k,0),2k+3=0,k=-32. 答案:B 3.已知一动点M到点A(-4,0)的距离是它到点B(2,0)的距离的2倍,则动点M的轨迹方程是 . 解析:设动点M的坐标为(x,y),则|MA|=2|MB|,即(x+4)2+y2=2(x-2)2+y2,整理,得x2+y2-8x=0.故所求动点M的轨迹方程为x2+y2-8x=0.答案:x2+y2-8x=0 4.已知点A(2,2),B(5,3),C(3,-1),求过A,B,C的圆的方程. 解:设这个圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),把三点坐标A(2,2),B(5,3),C(3,-1)代入得方程组22+22+2D+2E+F=0,52+32+5D+3E+F=0,32+(-1)2+3D-E+F=0,解得D=-8,E=-2,F=12.所以这个圆的方程为x2+y2-8x-2y+12=0. 通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结五、课时练通过总结,让学生进一步巩固本节所学内容,提高概括能力。本节课在学生学习了圆的标准方程的基础上,探究圆的一般方程及其特点。教学中,注重问题导向,给学生充分的探究时间和空间,培养学生的探究能力,落实提升学生能力,注重提升学生逻辑推理、数学抽样、数学运算等数学核心素养。

    注意事项

    本文(【2022高中数学精品教案】2.4.2 圆的一般方程 教学设计-人教A版高中数学选择性必修第一册.docx)为本站会员(yanj****uan)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开