欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三角函数的图象与性质(3课时)ppt课件.ppt

    • 资源ID:68569645       资源大小:2.02MB        全文页数:53页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数的图象与性质(3课时)ppt课件.ppt

    经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 1.4.11.4.1正弦、余弦函数的正弦、余弦函数的图象图象经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 三角函数三角函数三角函数线三角函数线正弦函数正弦函数余弦函数余弦函数正切函数正切函数正切线正切线AT 1.4.11.4.1正弦、余弦函数的图象正弦、余弦函数的图象yx xO-1PMA(1,0)Tsin=MPcos=OMtan=AT正弦线正弦线MP余弦线余弦线OM复习复习回顾回顾经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 正弦、余弦函数的图象正弦、余弦函数的图象 问题:问题:如何作出正弦、余弦函数的图象?如何作出正弦、余弦函数的图象?途径:途径:利用单位圆中正弦、余弦线来解决。利用单位圆中正弦、余弦线来解决。y=sinx x0,2O1 O yx-11y=sinx xR终边相同角的三角函数值相等 即:sin(x+2k)=sinx,kZ 描图:用光滑曲线描图:用光滑曲线 将这些正弦线的将这些正弦线的终点终点连结起来连结起来利用图象平移利用图象平移AB经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用正弦、余弦函数的图象正弦、余弦函数的图象 x6yo-12345-2-3-41y=sinx x0,2y=sinx xR正弦曲正弦曲线线yxo1-1经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用x6yo-12345-2-3-41 正弦、余弦函数的图象正弦、余弦函数的图象 余弦函数余弦函数的图象的图象 正弦函数正弦函数的图象的图象 x6yo-12345-2-3-41y=cosx=sin(x+),xR余弦曲余弦曲线线(0,1)(,0)(,-1)(,0)(2,1)正弦曲正弦曲线线形状完全一样形状完全一样只是位置不同只是位置不同如何由正弦函数图像得如何由正弦函数图像得到到余弦函数余弦函数图像?图像?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 正弦、余弦函数的图象正弦、余弦函数的图象 yxo1-1(0,0)(,1)(,0)(,-1)(2,0)五五点点画画图图法法五点法五点法(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)(0,0)(,1)(,0)(,-1)(2,0)经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 正弦、余弦函数的图象正弦、余弦函数的图象 例例1 (1)画出函数)画出函数y=1+sinx,x 0,2 的简的简图:图:0 2 010-10 1 2 1 0 1 o1yx-12y=sinx,x 0,2 y=1+sinx,x 0,2 步骤:步骤:1.列表列表2.描点描点3.连线连线经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用 正弦、余弦函数的图象正弦、余弦函数的图象(2)画出函数画出函数y=-cosx,x 0,2 的简图:的简图:0 2 10-101 -1 0 1 0 -1 yxo1-1y=-cosx,x 0,2 y=cosx,x 0,2 已知三角函数值求角已知三角函数值求角已知已知 求求已知三角函数值求角已知三角函数值求角已知已知 求求一定吗?一定吗?归归归归 纳纳纳纳 还有其他吗?还有其他吗?(1)在一个区间里找两个代表)在一个区间里找两个代表(2)分别加上)分别加上2k已知三角函数值求角已知三角函数值求角已知已知 求求 的范围。的范围。1.4.21.4.2正、余弦函数的性质正、余弦函数的性质经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用(2,0)(,-1)(,0)(,1)要点回顾要点回顾.正弦曲线、余弦函数的图象正弦曲线、余弦函数的图象1)1)图象作法图象作法-几何法几何法 五点法五点法2)2)正弦曲线、余弦曲线正弦曲线、余弦曲线x6yo-12345-2-3-41余弦曲余弦曲线线(0,1)(,0)(,-1)(,0)(2,1)x6yo-12345-2-3-41正弦曲正弦曲线线(0,0)(1)定义域:xR(2)值域:y-1,1经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用新课讲解新课讲解.正弦函数、余弦函数的性质正弦函数、余弦函数的性质注意:注意:如果在周期函数如果在周期函数f(x)f(x)的的所有周期中所有周期中存在存在一个最小的正数一个最小的正数,那么这个最小正数,那么这个最小正数就叫做就叫做f(x)f(x)的最小正周期的最小正周期.1.1.周期性的定义周期性的定义 对于函数对于函数f(x),f(x),如果如果存在一个非零常数存在一个非零常数T T,使得使得当当x x取定义域内的每一个值时,都有取定义域内的每一个值时,都有f(x+T)=f(x)f(x+T)=f(x)那么函数那么函数f(x)f(x)就叫做周期函数就叫做周期函数.非零常数非零常数T T叫做这个函数的周期叫做这个函数的周期.(一一)关于周期性关于周期性例:求下列函数的周期解:(1)cos(x+2)=cosx,3cos(x+2)=3cosx 函数y=3cosx,xR的周期为2(2)设函数y=sin2x,xR的周期为T,则 sin2(x+T)=sin(2x+2T)=sin2x 正弦函数的最小正周期为2,(2)设函数 的周期为T,则正弦函数的最小正周期为2,函数 的周期为4 y=sin2x,xR的周期为经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用新课讲解新课讲解.正弦函数、余弦函数的性质正弦函数、余弦函数的性质例例3.3.求下列函数的周期:求下列函数的周期:一般一般结论:结论:-利用结论利用结论P36.ex.1.2P36.ex.1.2经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用新课讲解新课讲解.正弦函数、余弦函数的性质正弦函数、余弦函数的性质结论:结论:(二二)关于奇偶性(复习)关于奇偶性(复习)一般地一般地,如果对于函数如果对于函数f(x)的的定义域内任意一个定义域内任意一个x,都有都有f(-x)=f(x),那么就说,那么就说f(x)是是偶函数偶函数如果对于函数如果对于函数f(x)的的定义域内任意一个定义域内任意一个x,都有都有f(-x)=-f(x),那么就说,那么就说f(x)是是奇函数奇函数1、_,则,则f(x)在这个区间上是)在这个区间上是增增函数函数.4.4.正弦余弦函数的单调性正弦余弦函数的单调性函数函数若在指定区间任取若在指定区间任取 ,且且 ,都有:,都有:函数的单调性反映了函数在一个区间上的走向。函数的单调性反映了函数在一个区间上的走向。观察正余弦函数的图象,探究其单调性观察正余弦函数的图象,探究其单调性2、_,则,则f(x)在这个区间上是)在这个区间上是减减函数函数.增函数:上升增函数:上升减函数:下降减函数:下降探究:正弦函数的单调性探究:正弦函数的单调性当当 在区间在区间上时,上时,曲线逐渐上升,曲线逐渐上升,sin的值由的值由 增大到增大到 。当当 在区间在区间上时,曲线逐渐下降,上时,曲线逐渐下降,sin的值由的值由 减小到减小到 。探究:正弦函数的单调性探究:正弦函数的单调性正弦函数在每个闭区间正弦函数在每个闭区间都是增函数,其值从都是增函数,其值从1增大到增大到1;而在每个闭区间而在每个闭区间上都是上都是减函数,其值从减函数,其值从1减小到减小到1。探究:余弦函数的单调性探究:余弦函数的单调性当当 在区间在区间上时,上时,曲线逐渐上升,曲线逐渐上升,cos的值由的值由 增大到增大到 。曲线逐渐下降,曲线逐渐下降,sin的值由的值由 减小到减小到 。当当 在区间在区间上时,上时,探究:余弦函数的单调性探究:余弦函数的单调性由余弦函数的周期性知:由余弦函数的周期性知:其值从其值从1减小到减小到1。而在每个闭区间而在每个闭区间上都是减函数,上都是减函数,其值从其值从1增大到增大到1;在每个闭区间在每个闭区间都是都是增函数增函数,分析:比较同名函数值的大小,往往可以利用函数的单调性,但需要考虑它是否在同一单调区间上,若是,即可判断,若不是,需化成同一单调区间后再作判断。例例4:利用三角函数的单调性,比较下列各组数的大小利用三角函数的单调性,比较下列各组数的大小解:练习练习先画草图,然后根据草图判断先画草图,然后根据草图判断练习5.正弦函数的最大值和最小值正弦函数的最大值和最小值最大值:最大值:当当 时,时,有最大值有最大值最小值:最小值:当当 时,时,有最小值有最小值探究:余弦函数的最大值和最小值探究:余弦函数的最大值和最小值最大值:最大值:当当 时,时,有最大值有最大值最小值:最小值:当当 时,时,有最小值有最小值必须必须使原函数取得使原函数取得最大值最大值的集合是的集合是必须必须使原函数取得使原函数取得最小值最小值的集合是的集合是1.1.求函数的最大值和最小求函数的最大值和最小求函数的最大值和最小求函数的最大值和最小值值值值因为有因为有负负号号,所以,所以结论要结论要相相反反的最大值的最大值的最大值的最大值最大最大最大最大最小最小最小最小练习:求函数练习:求函数练习:求函数练习:求函数正弦函数的单调性及单调区间正弦函数的单调性及单调区间正弦函数的增区间是正弦函数的增区间是减区间是减区间是余弦函数的单调性级单调区间余弦函数的单调性级单调区间余弦函数的增区间是余弦函数的增区间是减区间是减区间是例例5.求函数的单调求函数的单调递递增增区间区间y=sinzy=sinz的增区间的增区间的增区间的增区间原函数的增区间原函数的增区间原函数的增区间原函数的增区间求函数的单调增区间求函数的单调增区间求函数的单调增区间增增增增减减减减减减减减增增增增变式练习变式练习变式练习变式练习求函数的单调求函数的单调增增区间区间增增增增为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来增增增增增增增增减减减减求函数的单调求函数的单调增增区间区间增增增增为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来为了防止出错,以及计算方便,遇到负号要提出来增增增增增增增增增增增增练习经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用6.对称轴和对称点:对称轴和对称点:1.4.3 1.4.3 正切函数正切函数的图象和性质的图象和性质定义域值域最大值最小值奇偶性单调性y=sinxy=cosx函数性质RR-1,1-1,1仅当 时取得最大值1仅当 时取得最大值1仅当 时取得最小值-1仅当 时取得最小值-1奇函数偶函数复习回顾经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用单调性:单调性:经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用复习回顾复习回顾对称轴和对称点:对称轴和对称点:经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用(1)正切曲线图象如何作:)正切曲线图象如何作:几何描点法(利用三角函数线)几何描点法(利用三角函数线)正切函数的性质与图像正切函数的性质与图像思考思考:画正切函数选取哪一段好呢画正切函数选取哪一段好呢?画多长一段呢画多长一段呢?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用正切函数的性质与图像正切函数的性质与图像(三三)奇偶性奇偶性:(二二)周期性周期性:问题:是否是最小的正周期呢?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用正切函数的性质与图像正切函数的性质与图像经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用正切函数的性质与图像正切函数的性质与图像(四四)单调性:观察图像单调性:观察图像思考:在整个定义域内是增函数么?思考:在整个定义域内是增函数么?经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用正切函数的性质与图像正切函数的性质与图像(五)定义域、值域(五)定义域、值域:(六)关于对称点对称轴(六)关于对称点对称轴:从图象可以看出:无对称轴。从图象可以看出:无对称轴。直线直线 为渐近线为渐近线,对称点为零点及函数值不存在的点,即对称点为零点及函数值不存在的点,即 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用应用提升应用提升 v例例1(书上(书上P44例例6有变动)有变动)解:经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用应用提升应用提升经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用应用提升应用提升经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用应用提升应用提升经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用小结回顾小结回顾正切函数的基本性质正切函数的基本性质经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用课后作业课后作业1书本书本P45练习,做书上练习,做书上.2P46习题习题A组组6,7,8,9;B组组2 做本子上做本子上

    注意事项

    本文(三角函数的图象与性质(3课时)ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开