欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    立体几何证明方法总结ppt课件.ppt

    • 资源ID:68602232       资源大小:83KB        全文页数:7页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    立体几何证明方法总结ppt课件.ppt

    经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用立体几何复习立体几何复习经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用一、线线平行的证明方法:一、线线平行的证明方法:1 1、利用平行四边形。、利用平行四边形。4 4、如果两个平行平面同时和第三个平面相交,那么它们、如果两个平行平面同时和第三个平面相交,那么它们 的交线平行。(面面平行的性质定理)的交线平行。(面面平行的性质定理)5 5、如果两条直线垂直于同一个平面,那么这两条直线、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理)平行。(线面垂直的性质定理)6 6、平行于同一条直线的两条直线平行。、平行于同一条直线的两条直线平行。3 3、如果一条直线和一个平面平行,经过这条直线的平面和、如果一条直线和一个平面平行,经过这条直线的平面和 这个平面相交,那么这条直线就和交线平行。这个平面相交,那么这条直线就和交线平行。(线面平行的性质定理)(线面平行的性质定理)2 2、利用三角形或梯形的中位线。、利用三角形或梯形的中位线。7 7、夹在两个平行平面之间的平行线段相等。、夹在两个平行平面之间的平行线段相等。(需证明)(需证明)经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用二、线面平行的证明方法:二、线面平行的证明方法:1 1、定义法:直线与平面没有公共点。、定义法:直线与平面没有公共点。2 2、如果平面外一条直线和这个平面内的一条直线平行,、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(线面平行的判定定理)那么这条直线和这个平面平行。(线面平行的判定定理)4 4、反证法。、反证法。3 3、两个平面平行,其中一个平面内的任何一条直线必平行、两个平面平行,其中一个平面内的任何一条直线必平行 于另一个平面。于另一个平面。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用三、面面平行的证明方法:三、面面平行的证明方法:1 1、定义法:两平面没有公共点。、定义法:两平面没有公共点。2 2、如果一个平面内有两条相交直线都平行于另一个平面,、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理)那么这两个平面平行。(面面平行的判定定理)3 3、平行于同一平面的两个平面平行。、平行于同一平面的两个平面平行。4 4、经过平面外一点,有且只有一个平面和已知平面平行。、经过平面外一点,有且只有一个平面和已知平面平行。5 5、垂直于同一直线的两个平面平行。、垂直于同一直线的两个平面平行。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用四、线线垂直的证明方法:四、线线垂直的证明方法:1 1、勾股定理。、勾股定理。2 2、等腰三角形。、等腰三角形。3 3、菱形对角线。、菱形对角线。5 5、点在线上的射影。、点在线上的射影。6 6、如果一条直线和一个平面垂直,那么这条直线就和这个、如果一条直线和一个平面垂直,那么这条直线就和这个 平面内任意的直线都垂直。平面内任意的直线都垂直。7 7、在平面内的一条直线,如果和这个平面一条斜线的射影、在平面内的一条直线,如果和这个平面一条斜线的射影 垂直,那么它也和这条斜线垂直。(三垂线定理,需证明)垂直,那么它也和这条斜线垂直。(三垂线定理,需证明)8 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那、在平面内的一条直线,如果和这个平面一条斜线垂直,那 么它也和这条斜线的射影垂直。(三垂线逆定理,需证明)么它也和这条斜线的射影垂直。(三垂线逆定理,需证明)9 9、如果两条平行线中的一条垂直于一条直线,则另一条也、如果两条平行线中的一条垂直于一条直线,则另一条也 垂直于这条直线。垂直于这条直线。4 4、圆所对的圆周角是直角。、圆所对的圆周角是直角。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用五、线面垂直的证明方法:五、线面垂直的证明方法:1 1、定义法:直线与平面内任意直线都垂直。、定义法:直线与平面内任意直线都垂直。3 3、如果一条直线和一个平面内的两条相交直线垂直,那么、如果一条直线和一个平面内的两条相交直线垂直,那么 这条直线垂直于这个平面。(线面垂直的判定定理)这条直线垂直于这个平面。(线面垂直的判定定理)4 4、如果两个平面互相垂直,那么在一个平面内垂直于它们、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理)交线的直线垂直于另一个平面。(面面垂直的性质定理)5 5、两条平行直线中的一条垂直于平面,则另一条也垂直于、两条平行直线中的一条垂直于平面,则另一条也垂直于 这个平面。这个平面。6 6、一条直线垂直于两平行平面中的一个平面,则必垂直于、一条直线垂直于两平行平面中的一个平面,则必垂直于 另一个平面。另一个平面。7 7、两相交平面同时垂直于第三个平面,那么两平面交线垂、两相交平面同时垂直于第三个平面,那么两平面交线垂 直于第三个平面。直于第三个平面。8 8、过一点,有且只有一条直线与已知平面垂直。、过一点,有且只有一条直线与已知平面垂直。9 9、过一点,有且只有一个平面与已知直线垂直。、过一点,有且只有一个平面与已知直线垂直。2 2、点在面内的射影。、点在面内的射影。经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用六、面面垂直的证明方法:六、面面垂直的证明方法:1 1、定义法:两个平面的二面角是直二面角。、定义法:两个平面的二面角是直二面角。2 2、如果一个平面经过另一个平面的一条垂线,那么这两个、如果一个平面经过另一个平面的一条垂线,那么这两个 平面互相垂直。(面面垂直的判定定理)平面互相垂直。(面面垂直的判定定理)3 3、如果一个平面与另一个平面的、如果一个平面与另一个平面的垂线垂线平行,那么这两个平平行,那么这两个平 面互相垂直。面互相垂直。4 4、如果一个平面与另一个平面的、如果一个平面与另一个平面的垂面垂面平行,那么这两个平平行,那么这两个平 面互相垂直。面互相垂直。

    注意事项

    本文(立体几何证明方法总结ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开