1.1.2导数的概念54449.ppt
1.1.2 导数的概念n n在高台跳水运动中在高台跳水运动中,平均速度不一定能反映平均速度不一定能反映运动员在某一时刻的运动状态,需要用瞬运动员在某一时刻的运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时速度描述运动状态。我们把物体在某一时刻的速度称为时刻的速度称为瞬时速度瞬时速度.又如何求瞬时速度呢瞬时速度呢?江永一中 数学组周胤秀江永一中 数学组 周胤秀1 1 平均变化率近似地刻画了曲线在某一区间上的变化趋平均变化率近似地刻画了曲线在某一区间上的变化趋势势.l如何精确地刻画曲线在一点处的变化趋势呢如何精确地刻画曲线在一点处的变化趋势呢?求:从求:从2s到到(2+t)s这段时间内平均速度这段时间内平均速度2 2t0t0t0时时时时,在在在在2,2+2,2+t t 这这这这段时间内段时间内段时间内段时间内当t=0.01时,当t=0.01时,当t=0.001时,当t=0.001时,当t=0.0001时,当t=0.0001时,t=0.00001,t=0.00001,t=0.000001,t=0.000001,平均变化率近似地刻画了曲线在某一区间上的变化趋平均变化率近似地刻画了曲线在某一区间上的变化趋势势.l如何精确地刻画曲线在一点处的变化趋势呢如何精确地刻画曲线在一点处的变化趋势呢?3 3 当当 t 趋近于趋近于0时时,即无论即无论 t 从小于从小于2的一边的一边,还是从大还是从大于于2的一边趋近于的一边趋近于2时时,平均速度都趋近与一个确定的值平均速度都趋近与一个确定的值 13.1.从物理的角度看从物理的角度看,时间间隔时间间隔|t|无限变小时无限变小时,平均速度平均速度 就无限趋近于就无限趋近于 t=2时的瞬时速度时的瞬时速度.因此因此,运动员在运动员在 t=2 时的时的瞬时速度是瞬时速度是 13.1.表示表示“当当t=2,t趋近于趋近于0时时,平均速度平均速度 趋近于确定值趋近于确定值 13.1”.从从2s到到(2+t)s这段时间内平均速度这段时间内平均速度4 4探探 究究:1.运动员在某一时刻运动员在某一时刻 t0 的瞬时速度怎样表示的瞬时速度怎样表示?2.函数函数f(x)在在 x=x0 处的瞬时变化率怎样表示处的瞬时变化率怎样表示?5 5定义定义:函数函数 y=f(x)在在 x=x0 处的瞬时变化率是处的瞬时变化率是称为函数称为函数 y=f(x)在在 x=x0 处的处的导数导数,记作记作或或 ,即即6 6定义定义:函数函数 y=f(x)在在 x=x0 处的瞬时变化率是处的瞬时变化率是称为函数称为函数 y=f(x)在在 x=x0 处的处的导数导数,记作记作或或 ,即即7 7由导数的定义可知由导数的定义可知,求函数求函数 y=f(x)的导数的一般方法的导数的一般方法:1.求函数的改变量求函数的改变量2.2.求平均变化率求平均变化率3.3.求值求值一差、二化、三极限一差、二化、三极限8 8 例例1 将原油精炼为汽油、柴油、塑胶等各种不同产品将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热需要对原油进行冷却和加热.如果第如果第 x h时时,原油的温度原油的温度(单单位位:)为为 f(x)=x2 7x+15(0 x8).计算第计算第2h和第和第6h,原油温度的瞬时变化率原油温度的瞬时变化率,并说明它们的意义并说明它们的意义.解解:在第在第2h和第和第6h时时,原油温度的瞬时变化率就是原油温度的瞬时变化率就是和和根据导数的定义根据导数的定义,所以所以,同理可得同理可得 在第在第2h和第和第6h时时,原油温度的瞬时变化率分别为原油温度的瞬时变化率分别为3和和5.它说它说明在第明在第2h附近附近,原油温度大约以原油温度大约以3 /h的速率下降的速率下降;在第在第6h附近附近,原油温度大约以原油温度大约以5 /h的速率上升的速率上升.9 9 例例1 将原油精炼为汽油、柴油、塑胶等各种不同产品将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热需要对原油进行冷却和加热.如果第如果第 x h时时,原油的温度原油的温度(单单位位:)为为 f(x)=x2 7x+15(0 x8).计算第计算第2h和第和第6h,原油温度的瞬时变化率原油温度的瞬时变化率,并说明它们的意义并说明它们的意义.练习练习:计算第计算第3h和第和第5h时原油的瞬时变化率时原油的瞬时变化率,并说并说明它们的意义明它们的意义.课堂练习课堂练习:如果质点A按规律 则在t=3s时的瞬时速度为A.6 B.18 C.54 D.811010练习:练习:1111