欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1.3.1柱体、椎体、台体的表面积和体积.ppt

    • 资源ID:68700146       资源大小:1.35MB        全文页数:28页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.3.1柱体、椎体、台体的表面积和体积.ppt

    空间几何体的直观图空间几何体的直观图1.3.1 柱体、锥体、台体的表面积和体积 在初中已经学过了正方体和长方体的表面积,你在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?知道正方体和长方体的展开图与其表面积的关系吗?几何体表面积几何体表面积展开图展开图平面图形面积平面图形面积空间问题空间问题平面问题平面问题提出问题提出问题 正方体、长方体是由多个平面围成的几何体,它正方体、长方体是由多个平面围成的几何体,它们的表面积就是各个面的面积的和们的表面积就是各个面的面积的和 因此,我们可以把它们展成平面图形,利用平面因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积图形求面积的方法,求立体图形的表面积引入新课引入新课 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?体,它们的展开图是什么?如何计算它们的表面积?棱柱的侧面展开图是什么?如何计算它的表面棱柱的侧面展开图是什么?如何计算它的表面积?积?h棱柱的展开图棱柱的展开图正棱柱的侧面展开图正棱柱的侧面展开图 棱锥的侧面展开图是什么?如何计算它的表棱锥的侧面展开图是什么?如何计算它的表面积?面积?棱锥的展开图棱锥的展开图正棱锥的侧面展开图正棱锥的侧面展开图 棱锥的侧面展开图是什么?如何计算它的表棱锥的侧面展开图是什么?如何计算它的表面积?面积?棱锥的展开图棱锥的展开图侧面展开正棱锥的侧面展开图正棱锥的侧面展开图 棱台的侧面展开图是什么?如何计算它的表棱台的侧面展开图是什么?如何计算它的表面积?面积?棱锥的展开图棱锥的展开图侧面展开hh正棱台的侧面展开图正棱台的侧面展开图棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的体,它们的侧面展开图还是平面图形,计算它们的表面表面积就是计算它的各个侧面面积和底面面积之和积就是计算它的各个侧面面积和底面面积之和h 例例1 已知棱长为已知棱长为a,各面均为等边三角形的四面体,各面均为等边三角形的四面体S-ABC,求它的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开图是由四个全等的正三角形组成组成因为因为BC=a,所以:所以:因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点的面积,过点S作作 ,典型例题典型例题圆柱的表面积圆柱的表面积O圆柱的侧面展开图是矩形圆柱的侧面展开图是矩形圆锥的表面积圆锥的表面积圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形O圆台的表面积圆台的表面积 参照圆柱和圆锥的侧面展开图,试想象圆台的侧参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么面展开图是什么 OO圆台的侧面展开图是扇环圆台的侧面展开图是扇环三者之间关系三者之间关系OOOO 圆柱、圆锥、圆台三者的表面积公式之间有什么关圆柱、圆锥、圆台三者的表面积公式之间有什么关系?系?rr上底扩大上底扩大r0上底缩小上底缩小 例例2 2 如图,一个圆台形花盆盆口直径如图,一个圆台形花盆盆口直径20 cm20 cm,盆,盆底直径为底直径为15cm15cm,底部渗水圆孔直径为,底部渗水圆孔直径为1.5 cm1.5 cm,盆壁长,盆壁长15cm15cm那么花盆的表面积约是多少平方厘米(那么花盆的表面积约是多少平方厘米(取取3.143.14,结果精确到,结果精确到1 1 )?)?解:由圆台的表面积公式得解:由圆台的表面积公式得 花盆的表面积:花盆的表面积:答:花盆的表面积约是答:花盆的表面积约是999 999 典型例题典型例题 以前学过特殊的棱柱以前学过特殊的棱柱正方体、长方体以及圆柱正方体、长方体以及圆柱的体积公式的体积公式,它们的体积公式可以统一为:它们的体积公式可以统一为:(S为底面面积,为底面面积,h为高)为高)柱体体积柱体体积一般棱柱体积也是:一般棱柱体积也是:其中其中S为底面面积,为底面面积,h为棱柱的高为棱柱的高圆锥的体积公式:圆锥的体积公式:(其中(其中S为底面面积,为底面面积,h为高)为高)圆锥体积等于同底等高的圆柱的体积的圆锥体积等于同底等高的圆柱的体积的 圆锥体积圆锥体积探究棱锥与同底等高的棱柱体积之间的关系探究棱锥与同底等高的棱柱体积之间的关系棱锥体积棱锥体积三棱锥与同底等高的三棱柱的关系三棱锥与同底等高的三棱柱的关系(其中(其中S为底面面积,为底面面积,h为高)为高)由此可知,棱柱与圆柱的体积公式类似,都是底由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的底面面积乘高的 经过探究得知,棱锥也是同底等高的棱柱体积的经过探究得知,棱锥也是同底等高的棱柱体积的 即棱锥的体积:即棱锥的体积:锥体体积锥体体积台体体积台体体积 由于圆台由于圆台(棱台棱台)是由圆锥是由圆锥(棱棱锥锥)截成的,因此可以利用两个锥截成的,因此可以利用两个锥体的体积差得到圆台体的体积差得到圆台(棱台棱台)的的体积公式体积公式(过程略过程略)根据台体的特征,如何求台体的体积?根据台体的特征,如何求台体的体积?棱台(圆台)的体积公式棱台(圆台)的体积公式 其中其中 ,分别为上、下底面面积,分别为上、下底面面积,h为圆台为圆台(棱台)的高(棱台)的高台体体积台体体积柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,为底面面积,h为柱体高为柱体高S分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高S为底面面积,为底面面积,h为锥体高为锥体高台体体积台体体积上底扩大上底扩大上底缩小上底缩小 例例3 有一堆规格相同的铁制(铁的密度是有一堆规格相同的铁制(铁的密度是 )六角螺帽共重)六角螺帽共重5.8kg,已知底面是正六边形,已知底面是正六边形,边长为边长为12mm,内孔直径为,内孔直径为10mm,高为,高为10mm,问这,问这堆螺帽大约有多少个(堆螺帽大约有多少个(取取3.14)?)?解:六角螺帽的体积是六棱柱解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即的体积与圆柱体积之差,即:所以螺帽的个数为所以螺帽的个数为(个)(个)答:这堆螺帽大约有答:这堆螺帽大约有252252个个典型例题典型例题课堂练习1.长方体同一顶点上的三条棱长分别为1,2,3,则长方体的体积与表面积分别为()(A)6,22 (B)3,22(C)6,11 (D)3,112.一个圆柱的底面面积是S,其侧面展开图是正方形,那么该圆柱的侧面积为()(A)4S (B)2S(C)S (D)3.已知圆锥的底面直径是6 cm,高是4 cm,则该圆锥的表面积为_.4:已知一个空间几何体的正视图、侧视图、俯视图为三个全等的等腰直角三角形,如图所示.如果直角三角形的直角边长为1,求此几何体的体积.答案:1、A 2、A 3、24 cm2柱体、锥体、台体的表面积柱体、锥体、台体的表面积各面面积之和各面面积之和知识小结知识小结展开图展开图 圆台圆台圆柱圆柱圆锥圆锥柱体、锥体、台体的体积柱体、锥体、台体的体积锥体锥体台体台体柱体柱体知识小结知识小结

    注意事项

    本文(1.3.1柱体、椎体、台体的表面积和体积.ppt)为本站会员(赵**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开