2.2等差数列第3课时.ppt
2.2 2.2 等差数列等差数列第二章第二章 数列数列 第一课时第一课时 数列的定义,通项公式数列的定义,通项公式:按一定次序排成的一列数叫做数列。一般写成按一定次序排成的一列数叫做数列。一般写成a1,a2,a3,an,如果数列如果数列aan n 的第的第n n项项a an n与与n n的关系可以用一个的关系可以用一个公式来表示,那么这个公式就叫做这个数列的公式来表示,那么这个公式就叫做这个数列的通项公式。通项公式。 复习复习姚明刚进姚明刚进NBANBA一周训练罚球的个数:一周训练罚球的个数:第一天:第一天:60006000,第二天:第二天:65006500,第三天:第三天:70007000,第四天:第四天:75007500,第五天:第五天:80008000,第六天:第六天:85008500,第七天:第七天:9000.9000.得到数列:得到数列:60006000,65006500,70007000,75007500,80008000,85008500,9000.9000.情境情境1 1:情境情境2 2:匡威运动鞋(女)的尺码(鞋底长,单位是匡威运动鞋(女)的尺码(鞋底长,单位是cmcm)得到数列:得到数列:这两个数列有何共同特征?这两个数列有何共同特征?1、等差数列的定义、等差数列的定义 如果一个数列如果一个数列从第从第2项起项起,每一项与其前一项的差每一项与其前一项的差等等于于同一个常数同一个常数,那么这个数列就叫做等差数列,这个常,那么这个数列就叫做等差数列,这个常数叫做等差数列的数叫做等差数列的公差公差,公差通常用字母,公差通常用字母d表示。表示。由定义得等差数列的递推公式:由定义得等差数列的递推公式:说明:此公式是判断、证明一个数列是否为等差说明:此公式是判断、证明一个数列是否为等差数列的主要依据数列的主要依据.探究探究 练习:判断下列数列中哪些是等差数列,练习:判断下列数列中哪些是等差数列,哪些不是?如果是,写出首项哪些不是?如果是,写出首项a a1 1和公差和公差d,d,如果不是,说明理由。如果不是,说明理由。1,4,7,10,13,16,(),()你能求出该数列的通项公式吗?你能求出该数列的通项公式吗?思考思考:根据规律填空根据规律填空?要是有通项公式要是有通项公式该有多好啊!该有多好啊!2、等差数列的通项公式、等差数列的通项公式根据等差数列的定义得到根据等差数列的定义得到方法一:不方法一:不完全归纳法完全归纳法2、等差数列的通项公式、等差数列的通项公式将所有等式相加得将所有等式相加得方法二方法二累加法累加法例例1 求等差数列求等差数列8,5,2,的第的第20项项.-401是不是等差数列是不是等差数列-5,-9,-13,的项?如果是,的项?如果是,是第几项?是第几项?解:解:由由a1=8,d=5-8=-3,n=20,得,得 a20=8+(20-1)(-3)=-49.由由a1=-5,d=-9-(-5)=-4,得到这个数列的通项公式得到这个数列的通项公式为为an=-5-4(n-1).由题意得由题意得-401=-5-4(n-1),解这个关于解这个关于n的方程,得的方程,得n=100,即,即-401是这个数列的第是这个数列的第100项项.1、已知等差数列的首项与公差,可求得其任何一项;2、在等差数列的通项公式中,a1,d,n,an四个量中知三求一.结论结论 跟踪训练跟踪训练例例2 2 在等差数列在等差数列an中,已知中,已知 a5=10,a12=31,求首项求首项a1与公差与公差d.这是一个以a1和d 为未知数的二元一次方程组,解之得:解:由题意得:a1+4d=10 a1+11d=31 a1=-2 d=3 这个数列的首项a1是-2,公差d=3.跟踪训练跟踪训练21.1.等差数列的定义等差数列的定义2.2.通项公式通项公式及及其应用其应用你都掌握了吗?课本课本P40(A)1、3、作业作业一劳永逸的话,有是有的,而一劳永逸的事却极少。鲁迅2.2 2.2 等差数列等差数列第二章第二章 数列数列 第二课时第二课时 2、等差数列的通项公式、等差数列的通项公式1、等差数列的定义、等差数列的定义3、等差数列的中项、等差数列的中项 复习复习通项公式的证明及推广通项公式的证明及推广100与1804、等差数列通项公式的推广、等差数列通项公式的推广解析:解析:由等差数列的通项公式得由等差数列的通项公式得思考:已知等差数列思考:已知等差数列an中,中,a3=9,a9=3,求求a12,a3n.解法一解法一:依题意得:依题意得:a1+2d=9 a1+8d=3解之得解之得 a1=11 d=-1 这个数列的通项公式是:这个数列的通项公式是:an=11-(n-1)=12-n 故故 a12=0,a 3n=12 3 n.解法二:例例4例例5 已知三个数成等差数列,它们的和是已知三个数成等差数列,它们的和是12,积,积是是48,求这三个数,求这三个数.解:解:设三个数为设三个数为a-d,a,a+d,则,则解之得解之得故所求三数依次为故所求三数依次为2,4,6或或6,4,2例例6 如图,三个正方形的边如图,三个正方形的边AB,BC,CD的长组成等的长组成等差数列,且差数列,且AD21cm,这三个正方形的面积之和是,这三个正方形的面积之和是179cm2.(1)求)求AB,BC,CD的长;的长;(2)以)以 AB,BC,CD的长为等差数列的前三项,以第的长为等差数列的前三项,以第9项为边长的正方形的面积是多少?项为边长的正方形的面积是多少?3,7,11a9=35S9=12255、等差数列的通项及图象特征、等差数列的通项及图象特征解析解析:思考思考结论结论:首项是首项是1,公差是,公差是2的无穷等的无穷等差数列的通项公式为差数列的通项公式为an 2n-1相应的图象是直线y=2x-1上均匀排开的无穷多个孤立的点,如右图例如:5、等差数列的性质、等差数列的性质已知数列已知数列 为等差数列,那么有为等差数列,那么有性质性质1:若:若 成等差数列,则成等差数列,则 成等差数列成等差数列.证明:根据等差数列的定义,证明:根据等差数列的定义,即即 成等差数列成等差数列.如如 成等差数列,成等差数列,成等差数列成等差数列.推广:推广:在等差数列在等差数列有规律有规律地取出若干项,所得新数列仍地取出若干项,所得新数列仍然为等差数列。(如奇数项,项数是然为等差数列。(如奇数项,项数是7的倍数的项)的倍数的项)性质性质2:设:设 若若 则则性质性质3:设:设 c,b 为常数,若数列为常数,若数列 为等差数列,则数为等差数列,则数 列列 及及 为等差数列为等差数列.性质性质4:设:设 p,q 为常数,若数列为常数,若数列 、均为等差数列,均为等差数列,则数列则数列 为等差数列为等差数列.例8(1)已知等差数列an中,a3 a15=30,求a9,a7a11解:(1 1)a9是a3和a15的等差中项(2)已知等差数列an中,a3 a4a5 a6 a7=150,求a2a8的值7+11=3+15(2 2)3+7=4+6=5+5 a3 a4a5 a6 a7=5 a5=150即a5=30故a2a8=2 a5=60 a7a11=a3 a15=30 a3a7=a4 a6=2 a5(1)等差数列an中,a3 a9a15a21=8,则a12=(2)已知等差数列an中,a3 和a15是方程x26x1=0的两个根,则a7 a8 a9a10a11=2(3)已知等差数列an中,a3 a5=14,2a2a6=15,则a8=19 跟踪训练跟踪训练