欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第八章矿井空气调节概论.ppt

    • 资源ID:68962985       资源大小:294.50KB        全文页数:51页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第八章矿井空气调节概论.ppt

    第八章第八章矿井空气调节概论矿井空气调节概论 矿矿井井空空气气调调节节是是改改善善矿矿内内气气候候条条件件的的主主要要技技术术措措施施之之一一。其其主主要要内内容容包包括括两两方方面面:一一是是对对冬冬季季寒寒冷冷地地区区,当当井井筒筒入入风风温温度度低低于于22时时,对对井井口口空空气气进进行行预预热热;二二是是对对高高温温矿矿井井用用风风地地点点进进行行风风温温调调节节,以以达达到到规规程程规规定的标准。定的标准。第一节第一节 井口空气加热井口空气加热一、井口空气加热方式一、井口空气加热方式 井井口口一一般般采采用用空空气气加加热热器器对对冷冷空空气气进进行行加加热热,其其加加热热方方式式有有两种。两种。1.1.井口房不密闭的加热方式井口房不密闭的加热方式 当当井井口口房房不不宜宜密密闭闭时时,被被加加热热的的空空气气需需设设置置专专用用的的通通风风机机送送入入井井筒筒或或井井口口房房。这这种种方方式式按按冷冷、热热风风混混合合的的地地点点不不同同,又分以下三种情况:又分以下三种情况:(1 1)冷冷、热热风风在在井井筒筒内内混混合合:这这种种布布置置方方式式是是将将被被加加热热的的空空气气通通过过专专用用通通风风机机和和热热风风道道送送入入井井口口以以下下2m2m处处,在在井井筒筒内内进行热风和冷风的混合,如图进行热风和冷风的混合,如图8-1-18-1-1所示。所示。(2 2)冷冷、热热风风在在井井口口房房内内混混合合:这这种种布布置置方方式式是是将将热热风风直直接接送送入入井井口口房房内内进进行行混混合合,使使混混合合后后的的空空气气温温度度达达到到22以以上上后再进入井筒,如图后再进入井筒,如图8-1-28-1-2所示。所示。(3 3)冷、热风在井口房和井筒内同时混合)冷、热风在井口房和井筒内同时混合 这这种种布布置置方方式式是是前前两两种种方方式式的的结结合合,它它将将大大部部分分热热风风送送入入井井筒筒内内混混合合,而而将将小小部部分分热热风风送送入入井井口口房房内内混混合合,其其布布置置方方式式如如图图8-1-38-1-3所所示示。以以上上三三种种方方式式相相比比较较,第第一一种种方方式式冷冷、热热风风混混合合效效果果较较好好,通通风风机机噪噪声声对对井井口口房房的的影影响响相相对对较较小小,但但井井口口房房风风速速大大、风风温温低低,井井口口作作业业人人员员的的工工作作条条件件差差,而而且且井井筒筒热热风风口口对对面面井井壁壁、上上部部罐罐座座和和罐罐顶顶保保险险装装置置有有冻冻冰冰危危险险;第第二二种种方方式式井井口口房房工工作作条条件件有有所所改改善善,上上部部罐罐座座和和罐罐顶顶保保险险装装置置冻冻冰冰危危险险减减少少,但但冷冷、热热风风的的混混合合效效果果不不如如前前者者,而而且且井井口口房房内内风风速速较较大大,尤尤其其是是通通风风机机的的噪噪声声对对井井口口的的通通讯讯信信号号影影响响较较大大;第第三三种种方方式式综综合合了了前前两两种种的的优优点点,而而避避免免了了其其缺缺点点,但但管理较为复杂。管理较为复杂。图 8-1-21通风机房;通风机房;2空气加热室;空气加热室;3空气加热器;空气加热器;4通风机;通风机;5井筒井筒 图 8-1-1 1通风机房;通风机房;2空气加热室;空气加热室;3空气加热空气加热器;器;4通风机;通风机;5热风道;热风道;6井筒井筒 图8-1-3 1通风机房;通风机房;2空气加热室;空气加热室;3空气加热器;空气加热器;4通风机;通风机;5热风道;热风道;6井筒。井筒。2.2.井口房密闭的加热方式井口房密闭的加热方式 当当井井口口房房有有条条件件密密闭闭时时,热热风风可可依依靠靠矿矿井井主主要要通通风风机机的的负负压压作作用用而而进进入入井井口口房房和和井井筒筒,而而不不需需设设置置专专用用的的通通风风机机送送风风。采采用用这这种种方方式式,大大多多是是在在井井口口房房内内直直接接设设置置空空气气加加热器,让冷、热风在井口房内进行混合。热器,让冷、热风在井口房内进行混合。对对于于大大型型矿矿井井,当当井井筒筒进进风风量量较较大大时时,为为了了使使井井口口房房风风速速不不超超限限,可可在在井井口口房房外外建建立立冷冷风风塔塔和和冷冷风风道道,让让一一部部分分冷冷风风先先经经过过冷冷风风道道直直接接进进入入井井筒筒,使使冷冷、热热风风即即在在井井口口房房混混合合又又在在井井筒筒内内混混合合。采采用用这这种种方方式式时时,应应注注意意防防止止冷冷风风道与井筒联接处结冰。道与井筒联接处结冰。井口房不密闭与井口房密闭这两种井口空气加热方式相井口房不密闭与井口房密闭这两种井口空气加热方式相比,其优缺点见表比,其优缺点见表8-1-18-1-1。井口空气加井口空气加热方式热方式优优 点点 缺缺 点点井口房不密井口房不密闭时闭时 1 1井口房不要求密闭;井口房不要求密闭;2 2可建立可建立独立的空气加热室,布置较为灵活;独立的空气加热室,布置较为灵活;3 3在相同风量下,所需空气加热器在相同风量下,所需空气加热器的的片数少。片数少。1 1井口房不要求密闭;井口房不要求密闭;2 2可建立独立的空气加热可建立独立的空气加热室,布置较为灵活;室,布置较为灵活;3 3在相同风量下,所需空气在相同风量下,所需空气加热器的片数少。加热器的片数少。井口房密闭井口房密闭时时 1 1井口房工作条件好;井口房工作条件好;2 2不需设不需设置专用通风机,设备投资少。置专用通风机,设备投资少。1 1井口房密闭增加矿井井口房密闭增加矿井通风阻力;通风阻力;2 2井口房漏风管理较为井口房漏风管理较为麻烦。麻烦。表8-1-1 井口空气加热方式的优缺点比较表二、空气加热量的计算二、空气加热量的计算1.1.计算参数的确定计算参数的确定(1)(1)室室外外冷冷风风计计算算温温度度的的确确定定。井井口口空空气气防防冻冻加加热热的的室室外外冷冷风风计计算算温温度度,通通常常按按下下述述原原则则确确定定:立立井井和和斜斜井井采采用用历历年年极极端端最最低低温温度度的的平平均均值值;平平硐硐采采用用历历年年极极端端最最低低温温度度平平均均值值与与采采暖暖室室外外计计算算温温度度二者的平均值。二者的平均值。(2)(2)空空气气加加热热器器出出口口热热风风温温度度的的确确定定。通通过过空空气气加加热热器器后后的的热热风风温温度度,根据井口空气加热方式按表根据井口空气加热方式按表8-1-28-1-2确定。确定。送风地点送风地点 热风温度热风温度()送风地点送风地点 热风温度热风温度()立井井筒立井井筒 6070 正压进入井正压进入井口房口房2030 斜井或平斜井或平硐硐 4050 负压进入井负压进入井口房口房 1020 表表8-1-2 空气加热器后热风温度的确定空气加热器后热风温度的确定2.2.空气加热量的计算空气加热量的计算 井井口口空空气气加加热热量量包包括括基基本本加加热热量量和和附附加加热热损损失失两两部部分分,其其中中附附加加热热损损失失包包括括热热风风道道、通通风风机机壳壳及及井井口口房房外外围围护护结结构构的热损失等。的热损失等。基基本本加加热热量量即即为为加加热热冷冷风风所所需需的的热热量量,在在设设计计中中,一一般般附附加加热热损损失失可可不不单单独独计计算算,总总加加热热量量可可按按基基本本加加热热量量乘乘以以一一个系数求得。个系数求得。即总加热量即总加热量Q Q,可按公式(可按公式(8-1-18-1-1)计算:)计算:,KW (8-1-1)KW (8-1-1)MM井井筒筒进进风风量量,Kg/sKg/s;C CP P空空气气定定压压比比热热,C Cp p=1.01=1.01 KJ/KJ/(KgKKgK)。热热量量损损失失系系数数,井井口口房房不不密密闭闭时时=1.05=1.051.101.10,密密闭闭时时=1.10=1.101.151.15;t th h冷冷、热热风风混混合后空气温度,可取合后空气温度,可取22;t tl l室外冷风温度,室外冷风温度,;三、空气加热器的选择计算三、空气加热器的选择计算1.1.基本计算公式基本计算公式(1)(1)通过空气加热器的风量通过空气加热器的风量 ,Kg/s Kg/s (8-1-38-1-3)M M1 1通通过过空空气气加加热热器器的的风风量量,Kg/sKg/s;t th0h0加加热热后后加加热热器器出出口口热热风风温温度,度,按表,按表8-1-28-1-2选取;其余符号意义同前。选取;其余符号意义同前。(2)(2)空气加热器能够供给的热量空气加热器能够供给的热量 Q QkStkStp p,KW (8-1-4)KW (8-1-4)Q Q空空气气加加热热器器能能够够供供给给的的热热量量,KWKW;K K 空空气气加加热热器器的的传传热热系系数数,KW/KW/(m m2 2KK);S S 空空气气加加热热器器的的散散热热面面积积,m m2 2;t tp p热热媒媒与与空气间的平均温差,空气间的平均温差,。当热媒为蒸汽时:当热媒为蒸汽时:t tp p=t=tv v-(t-(tl l+t+th0h0)/2,(8-1-5)/2,(8-1-5)当热媒为热水时:当热媒为热水时:t tp p=(t=(tw1w1+t+tw2w2)/2-(t)/2-(te e+t+thoho)/2)/2,(8-1-6)(8-1-6)t tv v饱饱和和蒸蒸汽汽温温度度,;t tw1w1、t tw2w2热热水水供供水水和和回回水水温温度度,;其其余符号意义同前。余符号意义同前。空气加热器常用的在不同压力下的饱和蒸汽温度,见表空气加热器常用的在不同压力下的饱和蒸汽温度,见表8-1-38-1-32.2.选择计算步骤选择计算步骤 空气加热器的选择计算可按下述方法和步骤进行:空气加热器的选择计算可按下述方法和步骤进行:(1)(1)初选加热器的型号初选加热器的型号 初初选选加加热热器器的的型型号号首首先先应应假假定定通通过过空空气气加加热热器器的的质质量量流流速速(vv),一一般般井井口口房房不不密密闭闭时时(v)(v)可可选选4 48Kg/m8Kg/m2 2.s,.s,井井口口房房密密闭闭时时(v)(v)可可选选2 24Kg/m4Kg/m2 2.s.s。然然后后按按下下式式求求出出加热器所需的有效通风截面积加热器所需的有效通风截面积S S:S SM M1 1/(v)/(v),m m2 2 (8-1-7)(8-1-7)在在加加热热器器的的型型号号初初步步选选定定之之后后,即即可可根根据据加加热热器器实实际际的的有有效通风截面效通风截面积,算出实际的积,算出实际的(v)(v)值。值。蒸汽压力蒸汽压力(KPa)30 98 196 245 294 343392 饱和蒸汽温度饱和蒸汽温度()100 119.6132.8 138.2 142.9147.2151 表表8-1-3 不同压力下的饱和蒸汽温度不同压力下的饱和蒸汽温度(2 2)计算加热器的传热系数)计算加热器的传热系数 表表8-1-48-1-4中中列列举举了了部部分分国国产产空空气气加加热热器器传传热热系系数数的的实实验验公公式式,供供学学习习时时参参考考,更更详详细细的的资资料料请请查查阅阅有有关关手手册册。如如果果有有的的产产品品在在整整理理传传热热系系数数实实验验公公式式时时,用用的的不不是是质质量量流流速速(vv),而而是是迎迎面面风风速速v vy y,则则应应根根据据加加热热器器有有效效截截面面积积与与迎迎风风面面积积之之比比值值(称称为为有有效效截截面面系系数数),使使用用关关系系式式,由由vv求出求出v vy y后,再计算传热系数。后,再计算传热系数。如如果果热热媒媒为为热热水水,则则在在传传热热系系数数的的计计算算公公式式中中还还要要用用到到管管内水流速内水流速V VW W。加热器管内水流速可按下式计算:加热器管内水流速可按下式计算:m/sm/s (8-1-8)(8-1-8)V VW W加加热热器器管管内内水水的的实实际际流流速速,m/sm/s;S Sw w空空气气加加热热器器热热媒媒通通过的截面积,过的截面积,m m2 2;CC水的比热,水的比热,C C 4.1868KJ/KgK4.1868KJ/KgK。其余符号意义同前。其余符号意义同前。加热器型号加热器型号 热媒热媒 传热系数传热系数K(W/m2K)空气阻力空气阻力H(Pa)热水阻力热水阻力h(KPa)5、6、10D 5、6、10ZSRZ型型 5、6、10X 7D 7Z 7X 蒸汽蒸汽 146(v)0.49146(v)0.49145(v)0.532143(v)0.51146(v)0.4915.1(v)0.571 1.76(v)1.9981.47(v)1.980.88(v)2.122.06(v)1.172.94(v)1.521.37(v)1.917 D型:型:15.2VW1.96Z、X型:型:15.2VW1.96 BA/2SRL型型 BA/3 BA/2 BA/3 蒸汽蒸汽 热水热水 15.2(v)0.5015.1(v)0.4316.5(v)0.2414.5(v)0.291.71(v)1.673.03(v)1.621.5(v)1.582.9(v)1.58表表8-1-4 部分国产空气加热器的传热系数和阻力计算公式表部分国产空气加热器的传热系数和阻力计算公式表注注:v空气质量流速空气质量流速,Kg/m2.s;VW 水流速,水流速,m/s。(3 3)计算所需的空气加热器面积和加热器台数)计算所需的空气加热器面积和加热器台数 空气加热器所需的加热面积可按下式计算:空气加热器所需的加热面积可按下式计算:m m2 2 (8-1-(8-1-9)9)式中符号意义同前。式中符号意义同前。计计算算出出所所需需加加热热面面积积后后,可可根根据据每每台台加加热热器器的的实实际际加加热热面面积确定所需加热器的排数和台数。积确定所需加热器的排数和台数。(4)(4)检查空气加热器的富余系数,一般取检查空气加热器的富余系数,一般取1.151.151.251.25。(5)(5)计算空气加热器的空气阻力计算空气加热器的空气阻力H H,计算公式见表计算公式见表8-1-48-1-4。(6)(6)计算空气加热器管内水阻力计算空气加热器管内水阻力h h,计算公式也见表计算公式也见表8-1-48-1-4。第二节第二节 矿井主要热源及其散热量矿井主要热源及其散热量 要进行矿井空调设计,首先就必须了解引起矿井高温热害的主要影响要进行矿井空调设计,首先就必须了解引起矿井高温热害的主要影响因素。能引起矿井气温值升高的环境因素统称为因素。能引起矿井气温值升高的环境因素统称为矿井热源矿井热源。一、井巷围岩传热一、井巷围岩传热1 1围岩原始温度的测算围岩原始温度的测算 围岩原始温度是指井巷周围未被通风冷却的原始岩层温度。由于在地围岩原始温度是指井巷周围未被通风冷却的原始岩层温度。由于在地表大气和大地热流场的共同作用下,岩层原始温度沿垂直方向上大致表大气和大地热流场的共同作用下,岩层原始温度沿垂直方向上大致可划分为三个层带:可划分为三个层带:变温带:变温带:在地表浅部由于受地表大气的影响,岩层原始温度随地表大气在地表浅部由于受地表大气的影响,岩层原始温度随地表大气温度的变化而呈周期性地变化,称为温度的变化而呈周期性地变化,称为变温带变温带。恒温带:恒温带:随着深度的增加,岩层原始温度受地表大气的影响逐渐减弱,随着深度的增加,岩层原始温度受地表大气的影响逐渐减弱,而受大地热流场的影响逐渐增强,当到达某一深度处时,二者趋于平而受大地热流场的影响逐渐增强,当到达某一深度处时,二者趋于平衡,岩温常年基本保持不变,这一层带称为衡,岩温常年基本保持不变,这一层带称为恒温带恒温带,恒温带的温度约,恒温带的温度约比当地年平均气温高比当地年平均气温高1 122。增温带:增温带:在恒温带以下,由于受大地热流场的影响,在一定在恒温带以下,由于受大地热流场的影响,在一定的区域范围的区域范围内,岩层原始温度随深度的增加而增加,大致呈线性的变化规律,这内,岩层原始温度随深度的增加而增加,大致呈线性的变化规律,这一层带称为增温带。一层带称为增温带。地温率:地温率:在增温带内,岩层原始温度随深度的变化规律可用地温率或地在增温带内,岩层原始温度随深度的变化规律可用地温率或地温梯度来表示。地温率是指恒温带以下岩层温度每增加温梯度来表示。地温率是指恒温带以下岩层温度每增加11,所增加的,所增加的垂直深度,即:垂直深度,即:m/(8-2-1)m/(8-2-1)地地温温梯梯度度:指指恒恒温温带带以以下下,垂垂直直深深度度每每增增加加100m100m时时,原原始始岩岩温温的的升升高高值,它与地温率之间的关系为:值,它与地温率之间的关系为:G Gr r=100/g=100/gr r /100m (8-2-2)/100m (8-2-2)g gr r地温率,地温率,m/m/;G Gr r地温梯度,地温梯度,/100m/100m;Z Z0 0、ZZ恒恒温温带带深深度度和和岩岩层层温温度度测测算算处处的的深深度度,m m;t tr0r0、t tr r恒恒温温带带温温度度和和岩岩层层原原始始温温度度,。若若已已知知g gr r或或G Gr r及及Z Z0 0、t tr0r0,则则对对式式(8-2-18-2-1)、式式(8-2-28-2-2)进行变形后)进行变形后,即可计算出深度为即可计算出深度为ZmZm的原岩温度的原岩温度t tr r。矿区名称矿区名称 恒温带深度恒温带深度 Z0(m)恒温带温度恒温带温度tr0()地温率地温率 gr(m/)辽宁抚顺辽宁抚顺 山东枣庄山东枣庄 平顶山矿区平顶山矿区 罗河铁矿区罗河铁矿区安徽淮南潘集安徽淮南潘集辽宁北票台吉辽宁北票台吉 广西合山广西合山 浙江长广浙江长广 湖北黄石湖北黄石 2530 40 25 25 25 27 20 31 31 10.5 17.0 17.2 18.9 16.8 10.6 23.1 18.9 18.8 3045 3121 5925 33.7 40374044 43.339.8 表表8-2-1 我国部分矿区恒温带参数我国部分矿区恒温带参数 表表8-2-18-2-1列出的我国部分矿区恒温带参数和地温率数值,仅供参考。列出的我国部分矿区恒温带参数和地温率数值,仅供参考。2 2围岩与风流间传热量围岩与风流间传热量 井井巷巷围围岩岩与与风风流流间间的的传传热热是是一一个个复复杂杂的的不不稳稳定定传传热热过过程程。井井巷巷开开掘掘后后,随随着着时时间间的的推推移移,围围岩岩被被冷冷却却的的范范围围逐逐渐渐扩扩大大,其其所所向向风风流流传传递递的的热热量量逐逐渐渐减减少少;而而且且在在传传热热过过程程中中由由于于井井巷巷表表面面水水分分蒸蒸发发或或凝凝结结,还还伴伴随随着着传传质质过过程程发发生生。为为简简化化研研究究,目目前前常常将将这这些些复复杂杂的的影影响响因因素素都都归归结结到到传传热热系系数数中中去去讨讨论论。因因此此,井井巷巷围围岩岩与与风风流流间间的的传传热量可按下式来计算:热量可按下式来计算:Q Qr rK KUL(tUL(trmrm-t-t),KW (8-2-5)KW (8-2-5)Q Qr r井巷围岩传热量,井巷围岩传热量,KWKW;K K围岩与风流间的不稳定换热系数,围岩与风流间的不稳定换热系数,KW/(mKW/(m2 2);UU井巷周长,井巷周长,m m;LL井巷长度,井巷长度,m m;t trmrm平均原始岩温,平均原始岩温,;tt井巷中平均风温,井巷中平均风温,。围岩与风流间的不稳定传热系数围岩与风流间的不稳定传热系数K K是指井巷围岩深部未被是指井巷围岩深部未被冷却的岩体与空气间温差为冷却的岩体与空气间温差为1 1时,单位时间内从每时,单位时间内从每m m2 2 巷巷道壁面上向空气放出道壁面上向空气放出(或吸收或吸收)的热量。它是围岩的热物理的热量。它是围岩的热物理性质、井巷形状尺寸、通风强度及通风时间等的函数。由性质、井巷形状尺寸、通风强度及通风时间等的函数。由于不稳定传热系数的解析解相当复杂,在矿井空调设计中于不稳定传热系数的解析解相当复杂,在矿井空调设计中大多采用简化公式或统计公式计算。大多采用简化公式或统计公式计算。二、机电设备放热二、机电设备放热1.1.采掘设备放热采掘设备放热 采掘设备运转所消耗的电能最终都将转化为热能,其中大采掘设备运转所消耗的电能最终都将转化为热能,其中大部分将被采掘工作面风流所吸收。风流所吸收的热能中小部分将被采掘工作面风流所吸收。风流所吸收的热能中小部分能引起风流的温升,其中大部分转化成汽化潜热引起部分能引起风流的温升,其中大部分转化成汽化潜热引起焓增。焓增。采掘设备运转放热一般可按下式计算:采掘设备运转放热一般可按下式计算:Q Qc cNN,KW (8-2-6)KW (8-2-6)Q Qc c风流所吸收的热量,风流所吸收的热量,KWKW;采采掘掘设设备备运运转转放放热热中中风风流流的的吸吸热热比比例例系系数数;值值可可通通过实测统计来确定。过实测统计来确定。NN采掘设备实耗功率,采掘设备实耗功率,KWKW。2.2.其它电动设备放热其它电动设备放热 电动设备放热量一般可按下式计算:电动设备放热量一般可按下式计算:Q Qe e(1-(1-t t)m mN N,KW (8-2-7)KW (8-2-7)Q Qe e电动设备放热量,电动设备放热量,KWKW;NN电动机的额定功率,电动机的额定功率,KWKW;t t提升设备的机械效率,非提升设备或下放物料提升设备的机械效率,非提升设备或下放物料t t=0=0;m m电电动动机机的的综综合合效效率率,包包括括负负荷荷率率、每每日日运运转转时时间间和和电电动机效率等因素。动机效率等因素。三、运输中煤炭及矸石的放热三、运输中煤炭及矸石的放热 在在以以运运输输机机巷巷作作为为进进风风巷巷的的采采区区通通风风系系统统中中,运运输输中中煤煤炭炭及及矸矸石石的的放放热热是是一一种种比比较较重重要要的的热热源源。运运输输中中煤煤炭及矸石的放热量一般可用下式近似计算:炭及矸石的放热量一般可用下式近似计算:KW KW (8-2-8)(8-2-8)Q Qk k运输中煤炭或矸石的放热量,运输中煤炭或矸石的放热量,KWKW;mm煤炭或矸石的运输量,煤炭或矸石的运输量,Kg/sKg/s;C Cm m煤炭或矸石的比热,煤炭或矸石的比热,KJ/(Kg)KJ/(Kg);tt 煤煤炭炭或或矸矸石石与与空空气气温温差差,。可可由由实实测测确确定定,也也可用下式估算:可用下式估算:(8-2-9)(8-2-9)LL运运输输距距离离,m m;t tr r运运输输中中煤煤炭炭或或矸矸石石的的平平均均温温度度,一般较回采工作面的原始岩温低一般较回采工作面的原始岩温低4 488;t twmwm运输巷道中风流的平均湿球温度,运输巷道中风流的平均湿球温度,。四、矿物及其它有机物的氧化放热四、矿物及其它有机物的氧化放热 井井下下矿矿物物及及其其它它有有机机物物的的氧氧化化放放热热是是一一个个十十分分复复杂杂的的过过程程,很很难难将将它它与与其其它它热热源源分分离离开开来来单单独独计计算算,现现一一般般采采用用下下式式估算:估算:KW (8-2-10)KW (8-2-10)式中式中 Q Q0 0氧化放热量,氧化放热量,KWKW V V巷道中平均风速,巷道中平均风速,m/sm/s;q q0 0VV1m/s1m/s 时时单单位位面面积积氧氧化化放放热热量量,KW/mKW/m2 2;在在无无实实测资料时,测资料时,可取可取3 34.6104.610-3-3 KW/mKW/m2 2。其余符号意义同前。其余符号意义同前。五、人员放热五、人员放热 在在人人员员比比较较集集中中的的采采掘掘工工作作面面,人人员员放放热热对对工工作作面面的的气气候候条条件件也也有有一一定定的的影影响响。人人员员放放热热与与劳劳动动强强度度和和个个人人体体质有关,现一般按下式进行计算:质有关,现一般按下式进行计算:KW (8-2-11)KW (8-2-11)Q Qw0w0人员放热量,人员放热量,KWKW nn工作面总人数;工作面总人数;qq每每人人发发热热量量,一一般般参参考考以以下下数数据据取取值值:静静止止状状态态时时取取0.090.090.12KW0.12KW;轻轻度度体体力力劳劳动动时时取取0.2kw0.2kw;中中等等体体力力劳劳动时取动时取0.275kw0.275kw;繁重体力劳动时取繁重体力劳动时取0.47kw0.47kw。六、热水放热六、热水放热 井下热水放热主要取决于水温、水量和排水方式。当采用井下热水放热主要取决于水温、水量和排水方式。当采用有盖水沟或管道排水时,其传热量可按下式计算:有盖水沟或管道排水时,其传热量可按下式计算:KW (8-2-12)KW (8-2-12)Q Qw w热水传热量,热水传热量,KWKW;K Kw w水沟盖板或管道的传热系数,水沟盖板或管道的传热系数,KW/(mKW/(m2 2);SS水与空气间的传热面积。水沟排水水与空气间的传热面积。水沟排水:S:SB Bw wL L,m2m2;管道;管道排水排水:S:SD2LD2L,m2m2;B Bw w水沟宽度,水沟宽度,m m;D D2 2管道外径,管道外径,m m;LL水沟长度,水沟长度,m m;t tw w 水沟或管道中水的平均温度,水沟或管道中水的平均温度,;tt巷道中风流的平均温度,巷道中风流的平均温度,。水沟盖板的传热系数可按下式确定:水沟盖板的传热系数可按下式确定:KW/(mKW/(m2 2)(8-2-13)(8-2-13)管道传热系数可按下式确定:管道传热系数可按下式确定:KW/(mKW/(m2 2)(8-2-148-2-14)1 1水与水沟盖板或管道内壁的对流换热系数,水与水沟盖板或管道内壁的对流换热系数,KW/(mKW/(m2 2);2 2水沟盖板或管道外壁与巷道空气的对流换热系数,水沟盖板或管道外壁与巷道空气的对流换热系数,KW/(mKW/(m2 2);盖板厚度,盖板厚度,m m;盖板或管壁材料的导热系数,盖板或管壁材料的导热系数,KW/(mKW/(m2 2);D D1 1管道内径,管道内径,m m;D D2 2管道外径,管道外径,m m。第三节第三节 矿井风流热湿计算矿井风流热湿计算 矿矿井井风风流流热热湿湿计计算算是是矿矿井井空空调调设设计计的的基基础础,是是采采取取合合理理的的空空调调技技术术措措施的依据。施的依据。一、地表大气状态参数的确定一、地表大气状态参数的确定 地表大气状态参数一般按下述原则确定:地表大气状态参数一般按下述原则确定:温度温度采用历年最热月月平均温度的平均值;采用历年最热月月平均温度的平均值;相对湿度相对湿度采用历年最热月月平均相对湿度的平均值;采用历年最热月月平均相对湿度的平均值;含湿量含湿量采用历年最热月月平均含湿量的平均值。采用历年最热月月平均含湿量的平均值。这些数值均可从当地气象台、站的气象统计资料中获得。这些数值均可从当地气象台、站的气象统计资料中获得。二、井筒风流的热交换和风温计算二、井筒风流的热交换和风温计算 研研究究表表明明,在在井井筒筒通通过过风风量量较较大大的的情情况况下下,井井筒筒围围岩岩对对风风流流的的热热状状态态影影响响较较小小,决决定定井井筒筒风风流流热热状状态态的的主主要要因因素素是是地地表表大大气气条条件件和和风风流流在在井井筒筒内内的的加加湿湿压压缩缩过过程程。根根据据热热力力学学第第一一定定律律,井井筒筒风风流流的的热热平平衡衡方方程式为:程式为:(8-3-1)(8-3-1)在一定的大气压力下,风流的含湿量与风温呈近似的线性关系:在一定的大气压力下,风流的含湿量与风温呈近似的线性关系:g/Kg (8-3-2)g/Kg (8-3-2)式中式中 风流的相对湿度,;风流的相对湿度,;tt风流温度,风流温度,;PP大气压力,大气压力,PaPa;b b、PmPm与风温有关的常数,由表与风温有关的常数,由表8-3-18-3-1确定。确定。令令 :则:则:(8-3-3)(8-3-3)将式将式(8-3-3)(8-3-3)代入式代入式(8-3-1)(8-3-1)可解得:可解得:(8-3-4)(8-3-4)组合参数组合参数(只是为了简化公式而设的,没有任何物理意义只是为了简化公式而设的,没有任何物理意义):E E1 12.4876A2.4876A1 1;E E2 22.4876A2.4876A2 2 A A1 1622b/(P622b/(P1 1-Pm)-Pm);A A2 2622b/(P622b/(P2 2Pm)Pm);F F(Z(Z1 1Z Z2 2)/102.5)/102.5(E(E2 2E E1 1)。(8-3-4)(8-3-4)即为井底风温计算式。即为井底风温计算式。P P1 1、P P2 2井口、井底的大气压力,井口、井底的大气压力,对于井底大气压力可近似对于井底大气压力可近似 按式(按式(8-3-58-3-5)推算:)推算:P P2 2P P1 1g gp p(Z(Z1 1-Z-Z2 2),PaPa (8-3-5)(8-3-5)g gp p压力梯度,其值为压力梯度,其值为11.311.312.612.6,Pa/mPa/m;1 1、2 2 井口、井底空气的相对湿度,。井口、井底空气的相对湿度,。当井筒中存在水分蒸发时,由于水分蒸发吸收的热量来源于风流下行压当井筒中存在水分蒸发时,由于水分蒸发吸收的热量来源于风流下行压缩热和风流本身,这部分热量将转化为汽化潜热,所以当风流沿井筒向缩热和风流本身,这部分热量将转化为汽化潜热,所以当风流沿井筒向下流动时,有时井底风温不仅不会升高,反而还可能有所降低。下流动时,有时井底风温不仅不会升高,反而还可能有所降低。风风温温/b Pm 井下井下 地面地面11011171723232929353545 61.978 50.274144.305197.838268.328393.015 9.324 19.979-3.770-8.988-14.288-22.958 1016.12 734.161459.01 1053.362108.05 1522.08 3028.41 2187.854281.27 3105.556497.05 4692.24表表8-3-1 b、Pm参数取值表参数取值表 三、巷道风流的热交换和风温计算三、巷道风流的热交换和风温计算风流经过巷道时,由于与巷道环境间发生热湿交换,使风温随距离逐渐风流经过巷道时,由于与巷道环境间发生热湿交换,使风温随距离逐渐上升。其热平衡方程式为:上升。其热平衡方程式为:(8-3-6)(8-3-6)式中式中 M Mb b风流的质量流量,风流的质量流量,Kg/sKg/s;K K风流与围岩间的不稳定换热系数,风流与围岩间的不稳定换热系数,KW/(KW/(m m2 2);UU巷道周长,巷道周长,m m;t tr r原始岩温,原始岩温,;K Kt t、KxKx分别为热、冷管道的传热系数,分别为热、冷管道的传热系数,KW/(KW/(m m2 2);U Ut t、UxUx分别为热、冷管道的周长,分别为热、冷管道的周长,m m;t tt t、txtx分别为热、冷管道内流体的平均温度,分别为热、冷管道内流体的平均温度,;KwKw巷道中水沟盖板的传热系数,巷道中水沟盖板的传热系数,KW/(KW/(m m2 2);BwBw水沟宽度,水沟宽度,m m;t tw w 水沟中水的平均温度,水沟中水的平均温度,;Q Qm m巷道中各种绝对热源的放热量之和,巷道中各种绝对热源的放热量之和,KWKW;LL巷道的长度,巷道的长度,m m。式式(8-3-6)(8-3-6)通过变换整理可改写成:通过变换整理可改写成:(R(RE)tE)t2 2(R(RE EN)tN)t1 1M MF (8-3-7)F (8-3-7)由式由式(8-3-7)(8-3-7)可解得:可解得:,(8-3-8)(8-3-8)其中组合参数:其中组合参数:E E2.4876A2.4876A;N NN NN Nt tN Nx xN Nw w;R R1 10.5N0.5N;M MN Nt tr rN Nt tt tt tN Nx xt tx xN Nw wt tw w;。如果巷道中的相对热源只有围岩放热,则式如果巷道中的相对热源只有围岩放热,则式(8-3-8)(8-3-8)还可简化为:还可简化为:,(8-3-9)(8-3-9)四、采掘工作面风流热交换与风温计算四、采掘工作面风流热交换与风温计算1.1.采煤工作面采煤工作面 风流通过采煤工作面时的热平衡方程式可表示为风流通过采煤工作面时的热平衡方程式可表示为 (8-3-10)(8-3-10)式中式中 Q Qk k运输中煤炭放热量,运输中煤炭放热量,KWKW;其余符号意义同前。其余符号意义同前。将式将式(8-2-6)(8-2-6)和式和式(8-3-3)(8-3-3)代入式代入式(8-3-10)(8-3-10),经整理即可得出采煤工,经整理即可得出采煤工作面末端的风温计算式,其形式和式作面末端的风温计算式,其形式和式(8-3-9)(8-3-9)完全一样,只是其中的组合完全一样,只是其中的组合参数略有不同。参数略有不同。对于采煤工作面:对于采煤工作面:;式中式中 mm每小时煤炭运输量,每小时煤炭运输量,t/ht/h;AA工作面日产量,工作面日产量,t t;每日运煤时数,每日运煤时数,h h。当要求采煤工作面出口风温不超过当要求采煤工作面出口风温不超过规程规程规定时,其入口风温可按规定时,其入口风温可按下式确定:下式确定:,(8-3-11)(8-3-11)2.2.掘进工作面掘进工作面 风风流流在在掘掘进进工工作作面面的的热热交交换换主主要要是是通通过过风风筒筒进进行行的的,其其热热交交换换过过程程一一般般可可视为等湿加热过程。现以如图视为等湿加热过程。现以如图8-3-18-3-1 所示的压入式通风为例进行讨论。所示的压入式通风为例进行讨论。图8-3-1(1)(1)局部通风机出口风温确定局部通风机出口风温确定 风流通过局部通风机后,其出口风温一般可按下式确定:风流通过局部通风机后,其出口风温一般可按下式确定:,(8-3-12)(8-3-12)K Kb b 局部通风机放热系数,可取局部通风机放热系数,可取0.550.550.70.7;t t0 0 局部通风机入口处巷道中的风温;局部通风机入口处巷道中的风温;N Ne e 局部通风机额定功率,局部通风机额定功率,KWKW;M Mb1 b1 局部通风机的吸风量,局部通风机的吸风量,Kg/sKg/s。(2)(2)风筒出口风温的确定:风筒出口风温的确定:根据热平衡方程式,风流通过风筒时,其出口风温可按下式确定:根据热平衡方程式,风流通过风筒时,其出口风温可按下式确定:,(8-3-13)(8-3-13)其中:其中:对于单层风筒:对于单层风筒:KW/mKW/m2 2 (8-3-(8-3-14)14)对于隔热风筒:对于隔热风筒:KW/mKW/m2 2 (8-3-(8-3-15)15)式中式中 t tb b 风筒外平均风温,风筒外平均风温,;Z Z1 1 风筒入口处标高,风筒入口处标高,m m;Z Z2 2 风筒出口处标高,风筒出口处标高,m m;K Kt t 风筒的传热系数,风筒的传热系数,KW/(mKW/(m2 2);S St t 风筒的传热面积,风筒的传热面积,m m2 2;p p 风筒的有效风量率风筒的有效风量率,;M Mb2b2 风筒出口的有效风量,风筒出口的有效风量,Kg/sKg/s;1 1风筒外对流换热系数,风筒外对流换热系数,KW/(mKW/(m2 2);(8-3-16)(8-3-16)2 2风筒内对流换热系数,风筒内对流换热系数,KW/mKW/m2 2;(8-3-17)(8-3-17)D D 1 1隔热风筒外径,隔热风筒外径,m m;D D2 2 风筒内径,风筒内径,m m;隔热层的导热系数,隔热层的导热系数,KW/mKW/m;V Vb b 巷道中平均风速;巷道中平均风速;,m/s (8-3-18)m/s (8-3

    注意事项

    本文(第八章矿井空气调节概论.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开