欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    概率的定义及其确定方法ppt课件.ppt

    • 资源ID:68963675       资源大小:491KB        全文页数:23页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率的定义及其确定方法ppt课件.ppt

    为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能事件的事件的概率概率就是事件发生的可能性大小的一个数值度量就是事件发生的可能性大小的一个数值度量.更重要的是对事件出现的可能性的大小有一更重要的是对事件出现的可能性的大小有一个定量的描述个定量的描述.1.2 概率的定概率的定义义及其确定方法及其确定方法 研究随机现象不仅关心试验中会出现哪些事件,或者某事研究随机现象不仅关心试验中会出现哪些事件,或者某事件发生的可能性大不大,件发生的可能性大不大,准确了准确了解事件发生的可能性即概率的大小,对人们的生活有重要意义解事件发生的可能性即概率的大小,对人们的生活有重要意义.即只有一个定性的描述是不够的,即只有一个定性的描述是不够的,这就需要有一个度量事件发生可能性大小的数量指这就需要有一个度量事件发生可能性大小的数量指标,标,了解来商场购物的顾客人数的各种可能性了解来商场购物的顾客人数的各种可能性大小,合理配置服务人员大小,合理配置服务人员.了解每年最大洪水超警了解每年最大洪水超警戒线可能性大小,合理确定戒线可能性大小,合理确定堤坝高度堤坝高度.例如,了解发生意外人身事故的可能性大小例如,了解发生意外人身事故的可能性大小,确定保险金额确定保险金额.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能事件域事件域,若若定义在定义在F F 上的一个实值函数上的一个实值函数 P 满足:满足:(2)P()=1,(3)若事件若事件A1,A2,An,两两互不相容,则有两两互不相容,则有(1)若事件若事件A F F ,则,则 P(A)0,设设 是一个样本空间是一个样本空间,F F 为的某些子集组成的一个为的某些子集组成的一个1.2.1 概率的公理化定义概率的公理化定义 定义定义1.2.1 称称P为可测空间为可测空间(,F F )上的概率上的概率,P(A)为为事件事件A的概率的概率,称三元,称三元素素(,F F ,P)为为概率空间概率空间.柯尔莫哥洛夫提出的公理为数很少且极为简单,但在此柯尔莫哥洛夫提出的公理为数很少且极为简单,但在此基础上建立起了概率论的宏伟大厦基础上建立起了概率论的宏伟大厦.非负性非负性 正则性正则性 可列可列可加性可加性 由概率的三条公理,我们可推导出概率的若干重由概率的三条公理,我们可推导出概率的若干重要性质要性质.它们在计算概率时很有用,尤其是加法公式它们在计算概率时很有用,尤其是加法公式.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 则从甲城到则从甲城到乙城去旅游就有乙城去旅游就有 5+3+2=10 个班次可供选择个班次可供选择.1.2.2 排列与组合公式排列与组合公式两个两个基本计数原理基本计数原理.(1)加法原理加法原理(分类分类):设完成一件事有设完成一件事有k 种方式,第一种方式有种方式,第一种方式有n1种方法,第二种方式有种方法,第二种方式有n2种方法种方法,;第;第k 种方式有种方式有nk种方法,种方法,无论通过哪种方法都可以完成这件事,无论通过哪种方法都可以完成这件事,则完成这件事总共有则完成这件事总共有 n1+n2+nk 种方法种方法.例如例如,甲城到乙城有,甲城到乙城有3条旅游路线,乙城到丙城有条旅游路线,乙城到丙城有2条旅游路线,条旅游路线,则从甲城经乙城到丙城就有则从甲城经乙城到丙城就有 3 2=6 条旅游路线条旅游路线.则完成这件事共有则完成这件事共有种不同的方法种不同的方法.(2)乘法原理(分歩)乘法原理(分歩):设完成一件事有设完成一件事有k个步骤,第一个步骤有个步骤,第一个步骤有n1种方法,第二个步骤有种方法,第二个步骤有n2种方法,种方法,;第;第k个步骤有个步骤有nk种方法,种方法,必须通过每一步骤必须通过每一步骤,才算完成这件事,才算完成这件事,例如,例如,甲城到乙城去旅游有甲城到乙城去旅游有3类交通工具:汽车、火车和飞机,类交通工具:汽车、火车和飞机,而汽车有而汽车有5个班次,火车有个班次,火车有3个班次,飞机有个班次,飞机有2个班次,个班次,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 此种重复此种重复排列的总数为排列的总数为(1)(1)排排列列 从从n个个不同元素不同元素取取 r 个个(r n)排成一列排成一列(考虑先后顺序考虑先后顺序),称其为一个称其为一个排列排列.排列、组合的定义及其计算公式排列、组合的定义及其计算公式(2)(2)重复重复排排列列 从从n个个不同元素不同元素中每次取中每次取1个,个,放回放回后再取下一个,后再取下一个,r=n时称时称全排列全排列.由乘法原理,此种排列的总数为由乘法原理,此种排列的总数为 显然显然 如此连续取如此连续取r 次次(r可以大于可以大于n)所得的排列称为所得的排列称为重复排列重复排列,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 此种重复此种重复组合的总数为组合的总数为 由乘法原理,由乘法原理,组合总数为组合总数为此种组合的总数记为此种组合的总数记为 或或 ,(3)(3)组合组合从从n个个不同元素不同元素任取任取 r 个个(r n)并成一组并成一组(不考虑先后顺序不考虑先后顺序),称其为一个称其为一个组合组合.(4)(4)重复重复组合组合 从从n个个不同元素不同元素中每次取中每次取1个,放回后再取下一个,个,放回后再取下一个,如此连续取如此连续取r 次次(r可以大于可以大于n)所得的所得的组合组合称为称为重复组合重复组合,注意区别注意区别有序与无序有序与无序、重复与不重复重复与不重复.例:将两个例:将两个相同相同的球放入三个的球放入三个不同不同的盛球数不限的盒子中,有的盛球数不限的盒子中,有多少种不同的放法?多少种不同的放法?例:将两个例:将两个不同不同的球放入三个的球放入三个不同不同的盛球数不限的盒子中,有的盛球数不限的盒子中,有多少种不同的放法?多少种不同的放法?重复组合重复组合重复排列重复排列为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能例:用七种不同颜色中的一种、两种、三种或四种分别涂在正四面体的各个面上,一个面不能用两种颜色,也没有一个面不着色,有多少种着色方法?解法一:这个问题可归结为从七种不同颜色中取出四种颜色的重复组合(?)。所以着色方法有:解法二:取定一种或四种颜色涂在正四面体的四个面上各有一种涂法;取定两种或三种颜色涂在正四面体的四个面上各有3种涂法。所以着色方法有:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 则称则称n(A)为为事件事件A 发生的发生的频数频数,称比值称比值 为事件为事件 A 在在 n 次试验中出现的次试验中出现的频率频率,定义定义1 如果在如果在 n 次重复试验中事件次重复试验中事件A 发生了发生了n(A)次次,记为记为 f n(A),即即A 发生的发生的频繁程度频繁程度 基本性质基本性质(3)设设A1,A2,Ak 两两互不相容的事件,则两两互不相容的事件,则稳定值稳定值非负性非负性 正规性正规性 有限有限可加性可加性 1.2.3 确定概率的频率方法确定概率的频率方法参见参见P16 的的三个例子三个例子 即满足公理化定义即满足公理化定义.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能用频率用频率确定概率是一种常用的方法确定概率是一种常用的方法.其基本思想是:其基本思想是:(1)(1)与考察事件与考察事件 A 有关的随机现象可大量重复进行;有关的随机现象可大量重复进行;(2)(2)人们长期实践表明:随着实验重复次数人们长期实践表明:随着实验重复次数 n 的增加,的增加,频频率率 f n(A)会稳定在某一常数会稳定在某一常数 a 附近,称常数附近,称常数 a 为频率的为频率的稳定稳定值值;这个频率的稳定值就是我们所求的概率;这个频率的稳定值就是我们所求的概率;(3)(3)频率方法的缺点频率方法的缺点 现实中,人们无法把一个实验无现实中,人们无法把一个实验无限次地重复下去,限次地重复下去,因此要精确地得到频率的稳定值是困难的因此要精确地得到频率的稳定值是困难的.但频率方法提供了概率的一个可供想象的具体值,并且但频率方法提供了概率的一个可供想象的具体值,并且当实验重复次数当实验重复次数 n 较大时,可用频率给出概率的一个近似值较大时,可用频率给出概率的一个近似值.故称频率为概率的故称频率为概率的估计值估计值.这正是频率方法最有价值的地方这正是频率方法最有价值的地方.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 1.2.4 确定概率的古典方法确定概率的古典方法古典方法的基本思想古典方法的基本思想:(1)(1)样本空间样本空间 只有只有有限多有限多个样本点,个样本点,(2)(2)每个样本点发生的可能性每个样本点发生的可能性相等相等,等可能性等可能性这样就把求概率问题转化为这样就把求概率问题转化为计数问题计数问题.设事件设事件 A 由由 k 个样本点组成个样本点组成,即,即则则 A 的概率为:的概率为:称此概率为称此概率为古典概率古典概率.这种确定概率的方法称为这种确定概率的方法称为古典方法古典方法.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 同时掷两枚均匀硬币同时掷两枚均匀硬币,求事件求事件A=出现一个正面一个反出现一个正面一个反面面 的概率的概率.解解 同时掷两枚硬币有同时掷两枚硬币有 4 个等可能的结果,即样本空间为个等可能的结果,即样本空间为例例1.2.21.2.2 =(正正,正正),(正正,反反),(反反,正正),(反反,反反)4 个等可能个等可能古典概型古典概型又事件又事件A包含包含 2个样本点,个样本点,排列组合是计算古典概率的重要工具排列组合是计算古典概率的重要工具 列列 举举 法法为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能例例1.2.3(不放回抽样模型不放回抽样模型)设有设有 N 件产品件产品,其中有其中有 M 件次品件次品,现从现从这这 N 件中任取件中任取 n 件件(不放回不放回),求其中恰有求其中恰有 m 件次品的概率件次品的概率.设设 A=恰抽到恰抽到 m 件次品件次品 次品次品正品正品N M 件正件正品品解解:含的样本点数为含的样本点数为 ,只能取自只能取自 M 件次品件次品A 的次品有的次品有 种取法,种取法,A 的正品有的正品有 种取法,种取法,故故 A 含的样本点数为含的样本点数为 ,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能例例1.2.4(放回抽样模型放回抽样模型)设有设有 N 件产品件产品,其中有其中有 M 件次品件次品,现从这现从这 N 件中任取件中任取1件后放回,然后再抽取下一个,件后放回,然后再抽取下一个,如此重复,直,如此重复,直至抽出至抽出 n 件件,求事件求事件Bm=“取出的取出的n 件产品中恰有件产品中恰有 m 件次品件次品”的概的概率率.事件事件Bm发生必须从发生必须从N M 件正品中有放件正品中有放回的抽取回的抽取 n-m 次,从次,从M 件次品中有放回的抽件次品中有放回的抽取取m 次,所以共有次,所以共有 种取法。种取法。次品次品正品正品N M 件正件正品品解:解:含的样本点数为含的样本点数为 ,再考虑到这再考虑到这m个次品可能是在个次品可能是在n次中的任何次中的任何m次抽取中得到,共有次抽取中得到,共有 种可能种可能。故故 Bm 含的样本点数为:含的样本点数为:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能例例1.2.5(彩票问题彩票问题)一种福利彩票称为幸福一种福利彩票称为幸福3535选选7 7,即从,即从01,02,01,02,35,35中中不重复不重复地开出地开出7 7个基本号码和一个特殊号码个基本号码和一个特殊号码.中各等奖的规则如下,中各等奖的规则如下,试求各等奖的中奖概率试求各等奖的中奖概率.级别级别中奖规则中奖规则一等奖七个基本号码全中二等奖中六个基本号码和特殊号码三等奖中六个基本号码四等奖中五个基本号码和特殊号码五等奖中五个基本号码六等奖中四个基本号码和特殊号码七等奖中四个基本号码,或中三个基本号码和特殊号码解:解:35个号码被分成三种:个号码被分成三种:第一种:第一种:7个基本号码;个基本号码;第二种:第二种:1个特殊号码;个特殊号码;第三种:第三种:27个无用号码。个无用号码。设设 pi 为中第为中第 i 等奖的概率,则等奖的概率,则为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能解:因为每个球都可放到解:因为每个球都可放到N个盒子中的任一个,所以个盒子中的任一个,所以n个球个球放的方式共有放的方式共有 种种,它们是等可能的它们是等可能的.例例1.2.6(盒子模型盒子模型)设有设有n个不同球个不同球,每个球都等可能地被放到每个球都等可能地被放到N个不同盒子的任一个个不同盒子的任一个,每个盒子所放球数不限每个盒子所放球数不限.试求恰好有试求恰好有n个个盒子各有一球的概率盒子各有一球的概率p?完成事件完成事件“恰好有恰好有n个盒子各有一球个盒子各有一球”可分两步:可分两步:第一歩:从第一歩:从N个盒子中任意取个盒子中任意取n个盒子准备放球;共个盒子准备放球;共有有 种取法种取法.第二歩:将第二歩:将n个球放入选中的个球放入选中的n个盒子中;共有个盒子中;共有 种放法种放法.所以恰好有所以恰好有n个盒子各有一球的概率为个盒子各有一球的概率为为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 有有n个人个人,每个人都以相同的概率被分在每个人都以相同的概率被分在 N (Nn)间房的每一间中间房的每一间中,求恰好有求恰好有n间房中各有一间房中各有一人的概率人的概率.人人房房许多表面上提法不同的问题实质上属于同一类型许多表面上提法不同的问题实质上属于同一类型 有有n个人,设每个人的生日是任一天的概率个人,设每个人的生日是任一天的概率相同相同.求这求这n(n 365)个人的生日互不相同的概个人的生日互不相同的概率率.(例例1.2.7)人人任一天任一天 有有n 个旅客个旅客,乘火车途经乘火车途经N(N n)个车个车站,站,设每个人在每站下车的概率相同设每个人在每站下车的概率相同,求求 n 个站个站各有一人下车的概率各有一人下车的概率.旅客旅客车站车站为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能P(A)=“等可能性等可能性”是一种假设,在实际应用中,我们需要根据实是一种假设,在实际应用中,我们需要根据实际情况去判断是否可以认为各基本事件或样本点是等可能的际情况去判断是否可以认为各基本事件或样本点是等可能的.在在实际应用中,往往只能实际应用中,往往只能“近似地近似地”出现等可能,出现等可能,“完全地完全地”等等可能是很难见到的可能是很难见到的.在许多场合,由在许多场合,由对称性和均衡性对称性和均衡性,我们就可,我们就可以认为基本事件是等可能的并在此基础上计算事件的概率以认为基本事件是等可能的并在此基础上计算事件的概率.在应用古典概型时必须注意在应用古典概型时必须注意“等可能性等可能性”的条件的条件再次提醒注意:再次提醒注意:例例 掷两枚骰子出现的点数之和等于掷两枚骰子出现的点数之和等于3 的概率的概率.解解 掷两枚骰子出现的点数之和的可能数值为掷两枚骰子出现的点数之和的可能数值为 2,3,4,12,=(1,1),(1,2),(2,1),(1,3),(6,6)26 6为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 当样本空间当样本空间 有有无限多个等可能无限多个等可能的样本点,并且的样本点,并且 可表示为可表示为一个一个有度量有度量的几何区域时的几何区域时,就形就形 成了确定概率的另一方法成了确定概率的另一方法几几何方法何方法.它类似于古典概率,仍用它类似于古典概率,仍用“事件的概率事件的概率”等等于于“部分部分”比比“全体全体”的方法来规定事件的概率的方法来规定事件的概率.不过现在的不过现在的“部分部分”和和“全体全体”所包含的样本点所包含的样本点是无限的是无限的.早在概率论发展初期,人们就认识到,只考虑有限个等可能样早在概率论发展初期,人们就认识到,只考虑有限个等可能样本点的古典方法是不够的本点的古典方法是不够的.1.2.5 确定概率的几何方法确定概率的几何方法.定义定义 若随机现象若随机现象 E 具有以下两个特征:具有以下两个特征:(1)(1)E 的样本空间有无穷多个样本点,且可用一个有度量的的样本空间有无穷多个样本点,且可用一个有度量的几何区域来表示;几何区域来表示;(2)(2)每个样本点出现的可能性相同。每个样本点出现的可能性相同。则则事件事件A的概率为的概率为:有度量的区域有度量的区域 事件事件A对应的区域仍以对应的区域仍以A表示表示长度长度面积面积体积体积.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能例例1.2.8(会面问题会面问题)甲乙两人约定在下午甲乙两人约定在下午6 6点到点到7 7点之间在某点之间在某处会面,并约定先到者应等候另一个人处会面,并约定先到者应等候另一个人2020分钟,过时即可离分钟,过时即可离开开.求两人能会面的概率求两人能会面的概率.解解:以以x和和y分别表示甲、乙两人到达约会地点的时间(以分为分别表示甲、乙两人到达约会地点的时间(以分为单位)。由等可能性知这是一个几何概率问题。所有样本点单位)。由等可能性知这是一个几何概率问题。所有样本点(x,y)构成的样本空间构成的样本空间 是是 一个边长为一个边长为60的正方形,其面积的正方形,其面积S=602.而事件而事件A=“两人能会面两人能会面”相当于相当于其面积为其面积为 SA=602-402.所以,所以,202006060yx A为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能解:解:以以 x 表示针的中点与最近一条平行线的距离,以表示针的中点与最近一条平行线的距离,以 表示针与平行线间的夹角,则样本空间表示针与平行线间的夹角,则样本空间 满足满足例例1.2.9(蒲丰的针蒲丰的针)平面上有间隔为平面上有间隔为d d(d d 0 0)的等距平行线,的等距平行线,向平面任意投掷一枚长为向平面任意投掷一枚长为L L(Ld Ld)的针,求事件的针,求事件A=“A=“针与任针与任一平行线相交一平行线相交”的概率的概率事件事件A发生的充要条件为:发生的充要条件为:由于针是任意投的,所以由等可能性知这是由于针是任意投的,所以由等可能性知这是一个几何概率问题。因此,一个几何概率问题。因此,0蒙特卡罗法蒙特卡罗法 P27为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能0 x a,0 y a,0 a-x-y a,而三条线段能构成三角形的而三条线段能构成三角形的条件是:条件是:由几何概型计算得所求概率为由几何概型计算得所求概率为0 xy aa y=a-x a/2a/2例例1.2.10 在长度为在长度为a 的线段内任取两点将其分为三段,求它的线段内任取两点将其分为三段,求它们可以构成一个三角形的概率们可以构成一个三角形的概率.解:分别用解:分别用x,y和和 a-x-y 表示线段被分成的三段的长度。则表示线段被分成的三段的长度。则由于是将线段任意分为三段,所以由等可能性由于是将线段任意分为三段,所以由等可能性知这是一个几何概率问题。知这是一个几何概率问题。所以样本空间为所以样本空间为 =(x,y)|)|0 x a,0 y a,0 x+y a ,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能 1.样本空间样本空间 是平面上某个区域是平面上某个区域(一线段,或平面、空一线段,或平面、空间中某个区域间中某个区域),它的面积,它的面积(长度或体积长度或体积)记为记为();2.样本空间样本空间 内的样本点是等可能的。内的样本点是等可能的。几何方法的要点:几何方法的要点:3.几何方法的正确运用,有赖于几何方法的正确运用,有赖于“等可等可能性能性”的正确规定的正确规定.A.4.应用的难度:应用的难度:如何确定样本空间如何确定样本空间.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能1933年年,kolmogorov 柯尔莫哥洛夫柯尔莫哥洛夫 无限个等可无限个等可能能样本点样本点 有限个有限个等可能等可能样本点样本点克服等可克服等可能观点不能观点不易解决的易解决的问题问题 公理化公理化 定义定义几何几何 定义定义 频率频率 定义定义古典古典定义定义为深入学习习近平新时代中国特色社会主义思想和党的十九大精神为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神贯彻全国教育大会精神,充分发挥中小学图书室育人功能充分发挥中小学图书室育人功能1.2.6 确定概率的主观方法确定概率的主观方法作业:作业:P30 6 P31 12、21、24

    注意事项

    本文(概率的定义及其确定方法ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开