欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019高中数学 第一章检测B 新人教B版必修2.doc

    • 资源ID:690438       资源大小:915.01KB        全文页数:9页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中数学 第一章检测B 新人教B版必修2.doc

    1第一章立体几何初步第一章立体几何初步检测(B)(时间:90 分钟 满分:120 分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 1 若直线l不平行于平面,且l,则( )A.内的所有直线与l异面B.内不存在与l平行的直线C.内存在唯一的直线与l平行D.内的直线与l都相交解析:依题意,直线l=A(如图),内的直线若经过点A,则与直线l相交;若不经过点A,则与直线l是异面直线,故选 B.答案:B2 2 某几何体的三视图如图,则该几何体的体积为( )A.16+8B.8+8C.16+16D.8+16解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=×22×4=8,V长方体=4×2×2=16.1 2所以所求体积为 16+8.故选 A.2答案:A3 3 某几何体的三视图如图,则该几何体的表面积为( )A.180B.200C.220D.240解析:由三视图知该几何体是底面为等腰梯形的直棱柱,如图,S上=2×10=20,S下=8×10=80,S前=S后=10×5=50,S左=S右=(2+8)×4=20,1 2所以S表=S上+S下+S前+S后+S左+S右=240,故选 D.答案:D4 4 设m,n是两条不同的直线,是两个不同的平面( )A.若m,n,则mnB.若m,m,则C.若mn,m,则nD.若m,则m解析:A 选项中,直线m,n可能平行,也可能相交或异面;B 选项中,与也可能相交,此时直线m平行于,的交线;D 选项中,m也可能平行于.故选 C.答案:C5 5 如图,O'A'B'是水平放置的OAB的直观图,则OAB的面积是( )A.63B.32C.62D.12解析:OAB是直角三角形,其两条直角边的长分别是 4 和 6,则其面积是 12.答案:D6 6 一个几何体的三视图如图所示,其中俯视图与左视图均是半径为 2 的圆,则这个几何体的体积是( )A.B.8C.D.3232 316 3解析:由三视图可知该几何体是将一个球切割而得到的几何体,切去的部分是球的,已知该球的半径为 2,所以该几何体的体积V=8,故选 B.3 4×(43× 23)答案:B7 7 平面截球O的球面所得圆的半径为 1,球心O到平面的距离为,则此球的体积为( )2A.B.4C.4D.66363解析:设球O的半径为R,则R=,故V球=R3=4.12+ ( 2)2= 33答案:B8 8 如图是一个多面体的三视图,则其表面积为( )A.B.+633 2C.+6D.+4334解析:由几何体的三视图可得,此几何体是平放的三棱柱,底面是正三角形,侧面是正方形,其表面积为S=3×()2+2××()2=6+.故选 C.23 423答案:C9 9 已知直三棱柱ABC-A1B1C1的 6 个顶点都在球O的球面上,若AB=3,AC=4,ABAC,AA1=12,则球O的半径为( )A.B.2C.D.33 17 21013 210解析:过C点作AB的平行线,过B点作AC的平行线,交点为D,同理过C1作A1B1的平行线,过B1作A1C1的平行线,交点为D1,连接DD1,则ABCD-A1B1C1D1恰好成为球的一个内接长方体,故球的半径r=.故选 C.32+ 42+ 122 2=13 2答案:C1010 如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABD和ACD折成互相垂直的两个平面后,某学生得出下列四个结论:BDAC;BAC是等边三角形;三棱锥D-ABC是正三棱锥;平面ADC平面ABC.其中正确的是( )A.B.C.D.解析:由题意知,BD平面ADC,则BDAC,正确;因为AD为等腰直角三角形斜边BC上的高,平面ABD平面ACD,所以AB=AC=BC,所以BAC是等边三角形,正确;易知DA=DB=DC,又由知正确;由知错.故选 B.答案:B二、填空题(本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中的横线上)1111 设a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线.上述命题中正确的命题是 .(写出所有正确命题的序号) 5解析:由平行公理知正确;当ab,bc时,a与c可以相交、平行、异面,故错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故错;a,b,并不能说明a与b“不同在任何一个平面内”,故错.答案:1212 已知圆锥的底面周长为 6,体积为 12,则该圆锥的侧面积为 . 解析:设圆锥的底面半径为R,高为h,由已知得 2R=6,所以R=3.于是 12=·32·h,解得h=4,1 3于是母线l=5,42+ 32所以侧面积S=×3×5=15.答案:151313 如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1V2= . 解析:由题意可知点F到面ABC的距离与点A1到面ABC的距离之比为 12,SADESABC=14.因此V1V2=124.1 3· 2· 答案:1241414 如图,正方体的底面与正四面体的底面在同一平面上,且ABCD,则直线EF与正方体的六个面所在的平面相交的平面个数为 . 解析:作FO平面CED,则EOCD,FO与正方体的侧棱平行,所以平面EOF一定与正方体的左、右侧面平行,而与其他四个面相交.6答案:41515 已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积3 2 23为 . 解析:如图所示,在正四棱锥O-ABCD中,VO-ABCD=×S正方形ABCD·OO1=×()2×OO1=,33 2 2OO1=,AO1=,3 2 26 2在 RtOO1A中,OA=,即R=,21+ 2 1=(3 2 2)2+(6 2)2= 66S球=4R2=24.答案:24三、解答题(本大题共 5 小题,共 45 分.解答时应写出文字说明、证明过程或演算步骤)1616(本小题满分 8 分)某几何体的三视图如图,其中俯视图的内外均为正方形,边长分别为 2 和 4,几何体的高为 3,求此几何体的表面积和体积.解由三视图可知该几何体是一个正四棱台.其上、下底面边长分别为 2 和 4,又高为 3,所以其斜高h'=,(2 - 1)2+ 32= 10于是其表面积S=(8+16)×+22+42=20+12;1 21010其体积V=(22+2×4+42)×3=28.1 371717(本小题满分 8 分)如图,PA平面ABCD,ABCD是矩形,PA=AB=,AD=,点F是PB的中点,点23E是边BC上的动点.(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)求证:无论点E在边BC的何处,都有PEAF.(1)解EF与平面PAC平行.理由如下:当E为BC的中点时,F为PB的中点,EFPC.EF平面PAC,PC平面PAC,EF平面PAC.(2)证明PA=AB,F为PB的中点,AFPB.PA平面ABCD,PABC.又BCAB,PAAB=A,BC平面PAB.又AF平面PAB,BCAF.又PBBC=B,AF平面PBC.无论点E在边BC的何处,都有PE平面PBC,PEAF.1818(本小题满分 9 分)如图,在四棱锥P-ABCD中,ABCD,ABAD,CD=2AB,平面PAD平面ABCD,PAAD,E和F分别是CD和PC的中点.求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD=2AB,E为CD的中点,8所以ABDE,且AB=DE.所以ABED为平行四边形.所以BEAD.又因为BE平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,而且ABED为平行四边形,所以BECD,ADCD.由(1)知PA底面ABCD,所以PACD.所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF.所以CDEF.所以CD平面BEF.所以平面BEF平面PCD.1919(本小题满分 10 分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1平面A1CD;(2)设AA1=AC=CB=2,AB=2,求三棱锥C-A1DE的体积.2(1)证明连接AC1交A1C于点F,则F为AC1的中点.由D是AB的中点,连接DF,则BC1DF.因为DF平面A1CD,BC1平面A1CD,所以BC1平面A1CD.(2)解因为ABC-A1B1C1是直三棱柱,所以AA1CD.由已知AC=CB,D为AB的中点,则CDAB.因为AA1AB=A,所以CD平面ABB1A1.由AA1=AC=CB=2,AB=2,得ACB=90°,CD=,A1D=,DE=,A1E=3,2263则A1D2+DE2=A1E2,即DEA1D.9故=1. - 1=1 3×1 2× 6 × 3 × 22020(本小题满分 10 分)如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列两问:(1)在线段AB上是否存在一点K,使BC平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE平面ABCE,求证:平面BDE平面ADE.(1)解线段AB上存在一点K,且当AK= AB时,BC平面DFK.1 4证明如下:设H为AB的中点,连接EH,则BCEH,又AK= AB,F为AE的中点,1 4KFEH,KFBC.KF平面DFK,BC平面DFK,BC平面DFK.(2)证明在折起前的图形中E为CD的中点,AB=2,BC=1,在折起后的图形中,AE=BE=,2从而AE2+BE2=4=AB2,AEBE.平面ADE平面ABCE,平面ADE平面ABCE=AE,BE平面ADE,BE平面BDE,平面BDE平面ADE.

    注意事项

    本文(2019高中数学 第一章检测B 新人教B版必修2.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开