北师大版小学数学总复习资料-(2018.5.3).doc
-
资源ID:69134639
资源大小:171KB
全文页数:51页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
北师大版小学数学总复习资料-(2018.5.3).doc
优质文本小学数学总复习资料优质文本目录数和数的运算1一、概念1二、方法5三、性质和规律8四、运算的意义9五、应用题专题13度量衡24一、长度24二、面积24三、体积和容积24四、质量25五、时间25六、货币25代数初步知识26一、用字母表示数26二、简易方程27三、解方程27四、比和比例28几何的初步知识30一、线和角30二、平面图形31三、立体图形33简单的统计36一、统计表36二、统计图37小学数学公式归纳总结38一、常用数量关系式38二、运算定律38三、平面图形、立体图形、应用题计算公式39四、常用单位换算41优质文本数和数的运算一、概念一整数1整数的意义:自然数和0都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一个、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数bb0,除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数bb0整除,a就叫做b的倍数,b就叫做a的因数或a的因数。倍数和因数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的因数。(1) 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。(2) 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。(3)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。(4)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。(5)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。(6)一个数各位数上的和能被9整除,这个数就能被9整除。(7)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。(8)一个数的末两位数能被4或25整除,这个数就能被4或25整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。(9)一个数的末三位数能被8或125整除,这个数就能被8或125整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。(10) 能被2整除的数叫做偶数。(11) 不能被2整除的数叫做奇数。(12) 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。(13)一个数,如果只有1和它本身两个因数,这样的数叫做质数或素数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。(14)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。(15)1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数:28=2×2×7(17)几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。(18) 公因数只有1的两个数,叫做互质数,成互质关系的两个数,有以下几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。(19)两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。(20)如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(21)如果两个数是互质数,它们的最大公因数就是1。(22)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的公倍数,6是它们的最小公倍数。(23)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。(24)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。(25)几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。二小数1小数的意义(1)把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几(2)数位顺序表:一个小数由整数局部、小数局部和小数点局部组成。数中的圆点叫做小数点,小数点左边的数叫做整数局部,小数点左边的数叫做整数局部,小数点右边的数叫做小数局部。(3)计数单位:在小数里,每相邻两个计数单位之间的进率都是10。小数局部的最高分数单位十分之一和整数局部的最低单位一之间的进率也是10。2小数的分类纯小数:整数局部是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数局部不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数局部的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数局部的数位是无限的小数,叫做无限小数。例如:4.333.1415926无限不循环小数:一个数的小数局部,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是9,0.5454的循环节是54。纯循环小数:循环节从小数局部第一位开始的,叫做纯循环小数。例如:3.1110.5656混循环小数:循环节不是从小数局部第一位开始的,叫做混循环小数。3.12220.03333写循环小数的时候,为了简便,小数的循环局部只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。三分数1分数的意义(1)把单位1平均分成假设干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。(2)把单位1平均分成假设干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分(1)把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。(2)分子分母是互质数的分数,叫做最简分数。(3)把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。四百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%来表示。百分号是表示百分数的符号。二、方法一数的读法和写法1整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个亿或万字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3小数的读法:读小数的时候,整数局部按照整数的读法读,小数点读作点,小数局部从左向右顺次读出每一位数位上的数字。4小数的写法:写小数的时候,整数局部按照整数的写法来写,小数点写在个位右下角,小数局部顺次写出每一个数位上的数字。5分数的读法:读分数时,先读分母再读分之然后读分子,分子和分母按照整数的读法来读。6分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号%来表示。二数的改写一个较大的多位数,为了读写方便,常常把它改写成用万或亿作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4大小比较比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。比较小数的大小:先看它们的整数局部,整数局部大的那个数就大;整数局部相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。三数的互化1小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6分数化成百分数:通常先把分数化成小数除不尽时,通常保存三位小数,再把小数化成百分数。7百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。8.假分数化成带分数:分母不变,分子除以分母得到的商作为带分数的整数局部,余数作为新的分子9.带分数化成假分数:分母不变,整数乘分母加上原来的分子作为新的分子四数的整除1把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。3求几个数的最小公倍数的方法是:先用这几个数或其中的局部数的公因数去除,一直除到互质或两两互质为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质。五约分和通分 短除法约分的方法:用分子和分母的公因数1除外去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三、性质和规律一商不变的性质商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。二小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。三小数点位置的移动引起小数大小的变化1小数点向右移动一位,就扩大到原来的10倍;小数点向右移动两位,就扩大到原来的100倍;小数点向右移动三位,就扩大到原来的1000倍2小数点向左移动一位,就缩小到原来的;小数点向左移动两位,就缩小到原来的;小数点向左移动三位,就缩小到原来的3小数点向左移或者向右移位数不够时,要用0补足位。四分数的根本性质分数的分子和分母都乘以或者除以相同的数零除外,分数的大小不变。五分数与除法的关系1被除数÷除数=被除数/除数2因为零不能作除数,所以分数的分母不能为零。3被除数相当于分子,除数相当于分母。四、运算的意义一整数四那么运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是局部数,和是总数。加数+加数=和加数=和另一个加数2整数减法:两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,的和叫做被减数,的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是局部数。加法和减法互为逆运算。被减数-减数=差被减数=差+减数减数=被减数-差3整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。因数×因数=积因数=积÷另一个因数4整数除法:两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,的积叫做被除数,的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。被除数÷除数=商除数=被除数÷商被除数=商×除数二小数四那么运算1小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2小数减法:小数减法的意义与整数减法的意义相同。两个加数的和与其中的一个加数,求另一个加数的运算.3小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。4小数除法:小数除法的意义与整数除法的意义相同,就是两个因数的积与其中一个因数,求另一个因数的运算。5乘方平方:求几个相同因数的积的运算叫做乘方。例如33=3×3=32三分数四那么运算1分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2分数减法:分数减法的意义与整数减法的意义相同。两个加数的和与其中的一个加数,求另一个加数的运算。3分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4乘积是1的两个数叫做互为倒数。5分数除法:分数除法的意义与整数除法的意义相同。就是两个因数的积与其中一个因数,求另一个因数的运算。四运算定律1加法交换律:两个数相加,交换加数的位置,它们的和不变,即。2加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变,即。3乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a××a。4乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即a×b××b×c。5乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即×××c。6减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即。五运算法那么1整数加法计算法那么:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2整数减法计算法那么:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3整数乘法计算法那么:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4整数除法计算法那么:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补0占位。每次除得的余数要小于除数。5.小数乘法法那么:先按照整数乘法的计算法那么算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用0补足。6除数是整数的小数除法计算法那么:先按照整数除法的法那么去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0,再继续除。7除数是小数的除法计算法那么:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位位数不够的补0,然后按照除数是整数的除法法那么进行计算。8同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变9异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法那么进行计算。10带分数加减法的计算方法:整数局部和分数局局部别相加减,再把所得的数合并起来。11分数乘法的计算法那么:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12分数除法的计算法那么:甲数除以乙数0除外,等于甲数乘乙数的倒数。六运算顺序1小数四那么运算的运算顺序和整数四那么运算顺序相同。2分数四那么运算的运算顺序和整数四那么运算顺序相同。3没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。4有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5第一级运算:加法和减法叫做第一级运算。6第二级运算:乘法和除法叫做第二级运算。五、应用题思路大纲: 综合法:从条件出发,逐步推出所求问题。 一般应用题:解题根本方法: 分析法:从问题出发,找出必要的两个条件。 分析、综合法:将分析综合法结合起来交替使用 转化法 平均数应用题归一应用题 归总应用题 和差问题 和倍问题 差倍问题应用题 典型应用题 行程问题:相遇问题、追及问题 流水应用题 植树问题、复原问题 工程问题 盈亏应用题 年龄应用题 鸡兔同笼应用题 列方程解应用题列比例解应用题 分数应用题根底百分数应用题:利润问题、利息问题、浓度问题一一般应用题1简单应用题1简单应用题:只含有一种根本数量关系,或用一步运算解答的应用题2解题步骤:A.审题理解题意:找出条件 和所求问题B.分析条件和所求问题之间的关系,找出解题的途径C.列出算式解答D.检验:检查看算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。2复合应用题1有两个或两个以上的根本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。2含有三个条件的两步计算的应用题。求比两个数的和多少几个数的应用题。比较两数差与倍数关系的应用题。3含有两个条件的两步计算的应用题。两数相差多少或倍数关系与其中一个数,求两个数的和或差。两数之和与其中一个数,求两个数相差多少或倍数关系。4解答连乘连除应用题。5解答三步计算的应用题。6解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题根本相同,只是在数或未知数中间含有小数。7解答加法应用题:A.求总数的应用题:甲数是多少,乙数是多少,求甲乙两数的和是多少。B.求比一个数多几的数应用题:甲数是多少和乙数比甲数多多少,求乙数是多少。8解答减法应用题:A.求剩余的应用题:从数中去掉一局部,求剩下的局部。B.求两个数相差的多少的应用题:甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。C.求比一个数少几的数的应用题:甲数是多少,乙数比甲数少多少,求乙数是多少。9解答乘法应用题:A.求相同加数和的应用题:相同的加数和相同加数的个数,求总数。B.求一个数的几倍是多少的应用题:一个数是多少,另一个数是它的几倍,求另一个数是多少。10解答除法应用题:A.把一个数平均分成几份,求每一份是多少的应用题: B.求一个数里包含几个另一个数的应用题:一个数和每份是多少,求可以分成几份。C.求一个数是另一个数的的几倍的应用题: D.一个数的几倍是多少,求这个数的应用题。11常见的数量关系:总价=单价×数量路程=速度×时间工作总量=工作时间×工效总产量=单产量×数量二典型应用题:具有独特的结构特征的和特定的解题规律的复合应用题1平均数问题:平均数是等分除法的开展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。加权平均数:两个以上假设干份的平均数,求总平均数是多少。数量关系式局部平均数×权数的总和÷权数的和=加权平均数。差额平均数:是把各个大于或小于标准数的局部之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:大数小数÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。例题:一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。求这辆车的平均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为1,那么汽车行驶的总路程为2,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为,汽车的平均速度为2÷=75千米2归一问题:相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化 的规律是相同的,这种问题称之为归一问题。根据求单一量的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出单一量的归一问题。又称单归一。两次归一问题,用两步运算就能求出单一量的归一问题。又称双归一。正归一问题:用等分除法求出单一量之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出单一量之后,再用除法计算结果的归一问题。解题关键:从的一组对应量中用等分除法求出一份的数量单一量,然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量正归一 总数量÷单一量=份数反归一例题:一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。6930÷4774÷31=45天3归总问题:是单位数量和计量单位数量的个数,以及不同的单位数量或单位数量的个数,通过求总数量求得单位数量的个数或单位数量。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。例题:修一条水渠,原方案每天修800米,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做归总问题。不同之处是归一先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200米4和差问题:大小两个数的和,以及他们的差,求这两个数各是多少的应用题解题关键:是把大小两个数的和转化成两个大数的和或两个小数的和,再求另一个数。解题规律:和差÷2=大数大数差=小数、和差÷2=小数和小数=大数例题:某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班各有多少人?分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即9412,由此得到现在的乙班是9412÷2=41人,乙班在调出46人之前应该为41+46=87人,甲班为9487=7人5和倍问题:两个数的和及它们之间的倍数关系,求两个数各是多少的应用题解题关键:找准标准数即1倍数一般说来,题中说是谁的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数也可能是几个数与标准数的倍数关系,再去求另一个数或几个数的数量。解题规律:和÷倍数和=标准数标准数×倍数=另一个数例题:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与5+1倍对应,总车辆数应115-7辆。列式为115-7÷5+1=18辆,18×5+7=97辆6差倍问题:两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差÷倍数1=标准数标准数×倍数=另一个数。例题:甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多3-1倍,以乙绳的长度为标准数。列式63-29÷3-1=17米乙绳剩下的长度, 17×3=51米甲绳剩下的长度,29-17=12米剪去的长度。7行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。解题关键及规律:相遇问题、追及问题同时同地相背而行:路程=速度和×时间。同时相向而行:相遇时间=速度和×时间同时同向而行速度慢的在前,快的在后:追及时间=路程速度差。同时同地同向而行速度慢的在后,快的在前:路程=速度差×时间。例题:甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行16-9千米,也就是甲每小时可以追近乙16-9千米,这是速度差。甲在乙的后面28千米追击路程,28千米里包含着几个16-9千米,也就是追击所需要的时间。列式28÷16-9=4小时8流水问题:一般是研究船在流水中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。 水速:水流动的速度。顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。顺速=船速水速 逆速=船速水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。解题规律:船行速度=顺水速度+逆流速度÷2 流水速度=顺流速度逆流速度÷2路程=顺流速度×顺流航行所需时间 路程=逆流速度×逆流航行所需时间例题:一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。逆水比顺水多行2小时,水速每小时4千米。求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为284×2=20千米20×2=40千米40÷4×2=5小时28×5=140千米。9复原问题:某未知数,经过一定的四那么运算后所得的结果,求这个未知数的应用题解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果出发,采用与原题中相反的运算逆运算方法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。解答复原问题时注意观察运算的顺序。假设需要先算加减法,后算乘除法时别忘记写括号。例题:某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,那么四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168÷4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2等于平均数。四班原有人数列式为168÷4-2+3=43人一班原有人数列式为168÷4-6+2=38人;二班原有人数列式为168÷4-6+6=42人三班原有人数列式为168÷4-3+6=45人。10植树问题:研究总路程、株距、段数、棵树四种数量关系的应用题解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按根本公式进行计算。解题规律:沿线段植树:棵树=段数+1 棵数=总路程÷棵距+1棵距=总路程÷棵数-1 总路程=棵距×棵数-1沿周长植树:棵数=总路程÷棵距 棵距=总路程÷棵数 总路程=棵距×棵数例题:沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。后来全部改装,只埋了201根。求改装后每相邻两根的间距。分析:此题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为50×301-1÷201-1=75米11盈亏问题:是在等分除法的根底上开展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次缺乏或两次都有余,或两次都缺乏,所余和缺乏的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差也称总差额,用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次缺乏,总差额=多余+缺乏第一次正好,第二次多余或缺乏,总差额=多余或缺乏第一次多余,第二次也多余,总差额=大多余-小多余第一次缺乏,第二次也缺乏,总差额=大缺乏-小缺乏常用根本关系式:一盈一亏:盈亏÷没分数的差=份数两盈:大盈-小盈÷每份数的差=份数两亏:大亏-小亏÷每份数的差=份数一盈一尽:盈÷每份数的差=份数一尽一亏:亏÷每份数的差=份数例题:参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10人,那么多25支,如果小组有12人,色笔多余5支。求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。这个活动小组有12人,比10人多2人,而色笔多出了25-5