8.8二元函数的极值.ppt
科学出版社科学出版社第八章多元函数微分法及其应用http:/ 偏导数偏导数2二元函数二元函数3 1多元复合函数的求导法则多元复合函数的求导法则4全微分全微分3 3偏导数的几何应用偏导数的几何应用6隐函数的求导法隐函数的求导法3 5第八章 多元函数微分法及其应用二元函数的极值二元函数的极值8方向导数与梯度方向导数与梯度3 72科学出版社科学出版社 8.8 二元函数的极值二元函数的极值二元函数的极值二元函数的极值1二元函数的最大值与最小值二元函数的最大值与最小值 2二元函数的条件极值二元函数的条件极值33科学出版社科学出版社 二元函数的极值二元函数的极值定义定义8.8 设函数设函数在点在点的某个邻域的某个邻域内有定义,若对于内有定义,若对于内异于点内异于点的任的任恒有恒有 何点何点则称点则称点为函数为函数的的极大值点极大值点(或(或极小值点极小值点)称为极大值(或称为极大值(或 极小值)。极大值点和极小值极小值)。极大值点和极小值点统称为极值点,极大值和极小值统称为极值。点统称为极值点,极大值和极小值统称为极值。4科学出版社科学出版社 注注:1.极值是局部性概念极值是局部性概念.2.对于一些几何特征明显而又简单的问题可以直接对于一些几何特征明显而又简单的问题可以直接利用定义来求极值。利用定义来求极值。例如:例如:函数函数在点在点(0,0)有极小值有极小值0。在点在点(0,0)有极大值有极大值2。函数函数 函数函数5科学出版社科学出版社 说明说明:使偏导数都为 0 的点称为驻点.例如例如,定理定理1(必要条件必要条件)函数偏导数,证证:据一元函数极值的必要条件可知定理结论成立.取得极值,取得极值取得极值 但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故6科学出版社科学出版社 时,具有极值定理定理2(充分条件充分条件)的某邻域内具有一阶和二阶连续偏导数,且令则:1)当A0 时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数7科学出版社科学出版社 例例1.求函数解解:第一步第一步 求驻点求驻点.得驻点:(1,0),(1,2),(3,0),(3,2).第二步第二步 判别判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数8科学出版社科学出版社 在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)处不是极值;9科学出版社科学出版社 例例2.讨论函数及是否取得极值.解解:显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此 z(0,0)不是极值.因此为极小值.正正负负0在点(0,0)并且在(0,0)都有 可能为10科学出版社科学出版社 例例3 求由方程确定的函数的极值。分析分析 此题是隐函数极值的问题,计算方法与显函数相同,所不同的是在计算可疑极值点要利用隐函数求导法。解解 解法一:解法一:将方程两边分别对 求偏导,得 令,得出驻点 没有偏导数不存在的点。11科学出版社科学出版社 将代入方程,得。将 和 代入得,12科学出版社科学出版社 则则 当当时,时,故故 极小值极小值当当 时,时,,故故 极大值极大值 13科学出版社科学出版社 函数 f 在闭域上连续函数 f 在闭域上可达到最值 最值可疑点 驻点边界上的最值点特别特别,当区域内部最值存在,且只有一个只有一个极值点P 时,为极小 值为最小 值(大大)(大大)依据二元函数的最大值与最小值二元函数的最大值与最小值14科学出版社科学出版社 例例4.解解:设水箱长,宽分别为 x,y m,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水问当长、宽、高各取怎样的尺寸时,才能使用料最省?因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省.15科学出版社科学出版社 例例5.有一宽为有一宽为 24cm 的长方形铁板的长方形铁板,把它折起来做成把它折起来做成解解:设折起来的边长为 x cm,则断面面积x24一个断面为等腰梯形的水槽一个断面为等腰梯形的水槽,倾角为,积最大积最大.为问怎样折法才能使断面面问怎样折法才能使断面面16科学出版社科学出版社 令解得:由题意知,最大值在定义域D 内达到,而在域D 内只有一个驻点,故此点即为所求.17科学出版社科学出版社 二元函数的条件极值二元函数的条件极值极值问题无条件极值:条 件 极 值:条件极值的求法:方法方法1 代入法代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其它条件限制例如,转化18科学出版社科学出版社 方法方法2 拉格朗日乘数法拉格朗日乘数法.如方法 1 所述,则问题等价于一元函数可确定隐函数的极值问题,极值点必满足设 记例如例如,故 故有19科学出版社科学出版社 引入辅助函数辅助函数F 称为拉格朗日(Lagrange)函数.利用拉格极值点必满足则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.20科学出版社科学出版社 推广推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.设解方程组可得到条件极值的可疑点.例如例如,求函数下的极值.在条件21科学出版社科学出版社 例例6.要设计一个容量为则问题为求x,y,令解方程组解解:设 x,y,z 分别表示长、宽、高,下水箱表面积最小.z 使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问 22科学出版社科学出版社 得唯一驻点由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.因此,当高为思考思考:1)当水箱封闭时,长、宽、高的尺寸如何?提示提示:利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价最省,应如何设拉格朗日函数?长、宽、高尺寸如何?提示提示:长、宽、高尺寸相等.23科学出版社科学出版社 1.函数的极值问题函数的极值问题第一步 利用必要条件在定义域内找驻点.即解方程组第二步 利用充分条件 判别驻点是否为极值点.如对二元函数24科学出版社科学出版社 2.函数的条件极值问题函数的条件极值问题(1)简单问题用代入法(2)一般问题用拉格朗日乘数法设拉格朗日函数解方程组求驻点.如求二元函数下的极值,在条件25科学出版社科学出版社 第二步第二步 判别判别 比较驻点及边界点上函数值的大小 根据问题的实际意义确定最值第一步第一步 找目标函数找目标函数,确定定义域确定定义域(及约束条件及约束条件)3.函数的最值问题函数的最值问题26科学出版社科学出版社 练习练习 提高提高1.已知平面上两定点 A(1,3),B(4,2),试在椭圆圆周上求一点 C,使ABC 面积 S最大.解答提示解答提示:设 C 点坐标为(x,y),则 27科学出版社科学出版社 设拉格朗日函数解方程组得驻点对应面积而比较可知,点 C 与 E 重合时,三角形面积最大.点击图中任意点动画开始或暂停28科学出版社科学出版社 备用题备用题 1.求半径为求半径为R 的圆的内接三角形中面积最大的圆的内接三角形中面积最大者者.解解:设内接三角形各边所对的圆心角为 x,y,z,则它们所对应的三个三角形面积分别为设拉氏函数解方程组,得故圆内接正三角形面积最大,最大面积为 29科学出版社科学出版社 为边的面积最大的四边形,试列出其目标函数和约束条件?提示提示:目标函数目标函数:约束条件约束条件:答案答案:即四边形内接于圆时面积最大.2.求平面上以求平面上以30科学出版社科学出版社 课本:课本:P63练习理解练习理解 3思考提高思考提高 6作作 业业31科学出版社科学出版社