【数学】2.1.1-3《平面向量背景及基本概念》.ppt
-
资源ID:69185558
资源大小:197KB
全文页数:23页
- 资源格式: PPT
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【数学】2.1.1-3《平面向量背景及基本概念》.ppt
2.12.1平面向量的实际背景及基本概念平面向量的实际背景及基本概念第二章第二章 平面向量平面向量2.1.1 2.1.1 向量的物理背景与概念向量的物理背景与概念2.1.2 2.1.2 向量的几何表示向量的几何表示问题提出问题提出 1.1.在物理中,位移与距离是同一个概在物理中,位移与距离是同一个概念吗?为什么?念吗?为什么?探究(一):探究(一):向量的物理背景与概念向量的物理背景与概念 力的大小和力的方向力的大小和力的方向思考思考1 1:物体受到的重力、物体在液体中物体受到的重力、物体在液体中受到的浮力的方向分别如何?受力的大受到的浮力的方向分别如何?受力的大小分别与哪些因素有关?小分别与哪些因素有关?G GF思考思考2 2:力既有大小,又有方向,在物理力既有大小,又有方向,在物理学中称为学中称为矢量,矢量,你还能指出哪些物理量你还能指出哪些物理量是矢量吗?是矢量吗?思考思考3 3:数学中,把既有大小,又有方向数学中,把既有大小,又有方向的量叫做的量叫做向量向量,把只有大小,没有方向,把只有大小,没有方向的量称为的量称为数量数量.探究(二):探究(二):向量的几何表示向量的几何表示 思考思考1 1:一条小船从一条小船从A A地出发,向西北方地出发,向西北方向航行向航行15km15km到达到达B B地,可以用什么方式表地,可以用什么方式表示小船的位移?示小船的位移?B BA A东东北北思考思考3 3:如图,以如图,以A A为起点、为起点、B B为终点的有为终点的有向线段记作向线段记作 ,一条有向线段由哪几,一条有向线段由哪几个基本要素所确定?个基本要素所确定?A A(起点)(起点)B B(终点)(终点)思考思考4 4:用有向线段用有向线段 表示向量,向量表示向量,向量的大小和方向是如何反映出来的?的大小和方向是如何反映出来的?起点、长度、方向起点、长度、方向思考思考5 5:有向线段有向线段 的长度就是指线段的长度就是指线段ABAB的长度,也称为向量的长度,也称为向量 的长度或模,的长度或模,它表示向量它表示向量 的大小,记作的大小,记作|,两个,两个不同的向量可以比较大小吗?不同的向量可以比较大小吗?思考思考6 6:如果表示向量的有向线段没有标如果表示向量的有向线段没有标注起点和终点字母,向量也可以用黑体注起点和终点字母,向量也可以用黑体字母字母a,b,c,或,或 表示,如图表示,如图.此时向量的模怎样表示?此时向量的模怎样表示?a思考思考7 7:向量的模可以为向量的模可以为0 0吗?可以为吗?可以为1 1吗吗?可以为负数吗?可以为负数吗?思考思考8 8:模为模为0 0的向量叫做的向量叫做零向量零向量,记作,记作 ;模为;模为1 1个单位的向量叫做个单位的向量叫做单位向量单位向量.怎样理解零向量的方向?怎样理解向怎样理解零向量的方向?怎样理解向量量?总结总结联系:联系:向量与数量都是有大小的量;向量与数量都是有大小的量;区别:区别:向量有方向且不能比较大小,数向量有方向且不能比较大小,数 量无方向且能比较大小量无方向且能比较大小.向量可以用有向线段表示,也可以用字向量可以用有向线段表示,也可以用字母符号表示母符号表示.向量的模:向量的模:表示向量的有向线段的长度表示向量的有向线段的长度.零向量:零向量:模为模为0 0的向量的向量.单位向量:单位向量:模为模为1 1个单位长度的向量个单位长度的向量.探究(一):探究(一):相等向量与相反向量相等向量与相反向量 思考思考1 1:向量由其模和方向所确定向量由其模和方向所确定.对于对于两个向量两个向量a、b,就其模等与不等,方向,就其模等与不等,方向同与不同而言,有哪几种可能情形?同与不同而言,有哪几种可能情形?模相等,方向相同;模相等,方向相同;模相等,方向不相同;模相等,方向不相同;模不相等,方向相同;模不相等,方向相同;模不相等,方向不相同;模不相等,方向不相同;思考思考2 2:两个向量不能比较大小,只有两个向量不能比较大小,只有“相等相等”与与“不相等不相等”的区别,你认为如的区别,你认为如何规定两个向量相等?何规定两个向量相等?长度相等且方向相同的向长度相等且方向相同的向量叫做相等向量量叫做相等向量.向量向量a与与b相等记作相等记作a=b.思考思考3 3:用有向线段表示非零向量用有向线段表示非零向量 和和 ,如果,如果 ,那么,那么A A、B B、C C、D D四点四点的位置关系有哪几种可能情形?的位置关系有哪几种可能情形?A AB BC CD DA AB BC CD D思考思考4 4:对于非零向量对于非零向量 和和 ,如果,如果 ,通过平移使起点,通过平移使起点A A与与C C重合,那么终点重合,那么终点B B与与D D的位置关系如何?的位置关系如何?长度相等且方向相反的向量叫做长度相等且方向相反的向量叫做相反向量相反向量.思考思考5 5:非零向量非零向量 与与 称为相反向称为相反向量,一般地,如何定义相反向量?量,一般地,如何定义相反向量?D DC CB BA AB BA A思考思考6 6:如果非零向量如果非零向量 与与 是相反是相反向量,通过平移使起点向量,通过平移使起点A A与与C C重合,那么重合,那么终点终点B B与与D D的位置关系如何?的位置关系如何?D DC CB BA AB BA A探究(二):探究(二):平行向量与共线向量平行向量与共线向量 思考思考1 1:如果两个向量所在的直线互相平如果两个向量所在的直线互相平行,那么这两个向量的方向有什么关系行,那么这两个向量的方向有什么关系?思考思考2 2:方向相同或相反方向相同或相反的非零向量叫做的非零向量叫做平行向量平行向量,向量,向量a与与b平行记作平行记作a/b,那么,那么平行向量所在的直线一定互相平行平行向量所在的直线一定互相平行吗?吗?方向相同或相反方向相同或相反思考思考3 3:零向量零向量0 0与向量与向量a平行吗?平行吗?规定:零向量与任一向量平行规定:零向量与任一向量平行.思考思考4 4:将向量平移,不会改变其长度和将向量平移,不会改变其长度和方向方向.如图,设如图,设a、b、c是一组平行向量,是一组平行向量,任作一条与向量任作一条与向量a所在直线平行的直线所在直线平行的直线l,在,在l上任取一点上任取一点O O,分别作,分别作 =a,=b,=c,那么点,那么点A A、B B、C C的位置的位置关系如何?关系如何?A AB BC CO Olabc思考思考5 5:上述分析表明,任一组平行向上述分析表明,任一组平行向量都可以移动到同一直线上,因此,平量都可以移动到同一直线上,因此,平行向量也叫做行向量也叫做共线向量共线向量.如果非零向量如果非零向量 与与 是共线向量,那么点是共线向量,那么点A A、B B、C C、D D是否一定共线?是否一定共线?思考思考6 6:若向量若向量a与与b平行(或共线),则平行(或共线),则向量向量a与与b相等或相反吗?反之,若向量相等或相反吗?反之,若向量 a与与b相等或相反,则向量相等或相反,则向量a与与b平行(或平行(或共线)吗?共线)吗?思考思考7 7:对于向量对于向量a、b、c,若,若a/b,b/c,那么,那么a/c吗?吗?思考思考8 8:对于向量对于向量a、b、c,若,若a=b,b=c,那么,那么a=c吗?吗?例例1 1 判断下列命题是否正确:判断下列命题是否正确:(1 1)若两个单位向量共线,则这两个向)若两个单位向量共线,则这两个向量相等;量相等;()(2 2)不相等的两个向量一定不共线;)不相等的两个向量一定不共线;()(3 3)在四边形)在四边形ABCDABCD中,若向量与共线,中,若向量与共线,则该四边形是梯形;则该四边形是梯形;()(4 4)对于不同三点)对于不同三点O O、A A、B B,向量与一,向量与一定不共线定不共线.()理论迁移理论迁移 例例2 2 如图,设如图,设O O为正六边形为正六边形ABCDEFABCDEF的的中心,分别写出与中心,分别写出与 、相等的向量相等的向量.A AB BC CD DE EF FO O 例例3 3 如图,在如图,在ABCABC中,中,D D、E E、F F分分别是别是ABAB、BCBC、CACA边上的点,已知边上的点,已知 求证:求证:.A AB BCD DE EF F