欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新课标人教版八年级数学下全册教案教学设计全册.doc

    • 资源ID:69205575       资源大小:2.37MB        全文页数:107页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标人教版八年级数学下全册教案教学设计全册.doc

    第一课时 9.1 分式课时目标1掌握分式、有理式的概念。2掌握分式是否有意义、分式的值是否等于零的识别方法。教学重点正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。教学难点:正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。教学时间:一课时。教学用具:投影仪等。教学过程:一复习提问1什么是整式?什么是单项式?什么是多项式?2判断下列各式中,哪些是整式?哪些不是整式?m2 1xy2 二新课讲解:设问:不是整工式子中,和整式有什么区别?小结:1分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。练习:下列各式中,哪些是分式哪些不是?(1)、(2)、(3)、(4)、(5)x2、(6)4强调:(6)4带有是无理式,不是整式,故不是分式。2小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。练习:课后练习P6练习1、2题设问:(让学生看课本上P5“思考”部分,然后回答问题。)例题讲解:课本P5例题1分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。(板书解题过程。)3小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。增加例题:当x取什么值时,分式有意义?解:由分母x24=0,得x=±2。 当x±2时,分式有意义。设问:什么时候分式的值为零呢?例:解:当 分式的值为零 得 当时,分式的值为零。4小结:分式的值是否为零的识别方法:当分式的分子是零而分母不等于零时,分式的值等于零。练习:课本P6练习题3三本课小结:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。当分式的分子是零而分母不等于零时,分式的值等于零。分式(三)第三课时 9.2 分式的基本性质(2)一、目标要求1掌握分式中分子、分母和分式本身符号变号的法则。2能正确熟练地运用分式的变号法则解决有关的问题。二、重点难点重点是分式的分子、分母和分式本身符号变号的法则。难点是利用分式的变号法则,把分子或分母是多项式的变形。1分式的分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。2分式的变号法则,在分式运算中应用十分广泛。应用时要注意:分子与分母是多项式时,若第一项的符号不能作为分子或分母的符号,应将其中的每一项变号。三、解题方法指导【例1】不改变分式的值,使下列分式的分子、分母不含“”号:(1) (2)(3)分析:由于要求分式的分子、分母不含“”号,而对分式本身的符号未做规定。解:由分式的符号变化法则,可得结果(1)= (2)=(3)=【例2】不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1) (2)(3)分析:由于要求分式的分子、分母的最高次项的系数是正数,而对分式本身的符号未做规定,所以根据分式的符号法则,使分式中分子、分母与分式本身改变两处符号即可。解:(1)原式=。(2)原式=。(3)原式=。说明:两个整式相除,所得的分式,其符号法则与有理数除法的符号法则相类似,也同样遵循“同号得正,异号得负”的原则。四、激活思维训练【例】根据下列条件,求的值或允许值的范围:(1)分式的值是负数;(2)分式的值是正数;(3)分式的值是整数,且x为整数。说明:此题是根据分式的符号法则,来判定分式的正负性。分式(四)第四课时 9.3 分式的乘除法(1)一、目标要求1理解并掌握分式约分的概念及约分的方法;2能熟练地进行约分;3理解并掌握最简分式的意义。二、重点难点重点是约分及最简分式的意义。难点是分式的约分。1根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。2约分的步骤主要是:把分式的分子与分母分解因式,然后约去分子与分母的公因式。如:=。3一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的结果均要化为最简分式,而约分是其重要途径。4分式的约分是分式的分子与分母整体进行的,分式的分子和分母必须都是乘积的形式,才能进行约分。三、解题方法指导【例1】约分:(1) (2)(3) (4)分析:约分是把分子、分母的公因式约去,因此要找出分母、分子的公因式。当分子、分母是多项式时,必须将分子、分母分解因式。(1)找出分子、分母的公因式,注意分式分子有负号,就先把负号提到分式的前面。(2)要将(ab)与(ba)统一成(ab),因为(ab)3=(ba)3,(ab)4=(ba)4,为避免出现负号,考虑将分母(ab)4变为(ba)4。(3)分子与分母都是多项式,先把它们分解因式,然后约分。(4)分式的分子与分母虽然是积的形式,但没有公因式,并且每一个因式都还能分解,因此先分解再约分。解:(1)原式=。(2)原式=。(3)原式=。(4)原式=1。【例2】下列分式、中最简分式的个数是 ( )A1 B2 C3 D4分析:最简分式是分子与分母无公因式。因此可知判断一个分式是否是最简分式的关键是要看分子与分母是否有公因式。第一个分式的分子15bc与分母12a有公因式3;第二个分式的分子2(ab)2与分母ba有公因式ba;第三个分式的分子与分母没有公因式;第四个分式的分子a2b2与分母ab有公因式ab。解:选A。四、激活思维训练知识点:分式的约分【例】判断下列约分是否正确?为什么?(1)=0 (2)=(3)= (4)=分析:看一看它们的约分是否符合约分的原则。解:(1)不正确。因为分式的分子与分母相同,约分后其结果应为1。(2)不正确。因为分式的分子与分母不是乘积形式,不可约分。(3)正确。因为它遵循了分式约分的原则。(4)不正确。因为分式的分子与分母经过因式分解后,约分时违反了分式的符号法则。五、基础知识检测六、创新能力运用1下列各式计算中,正确的有( )个(1)= (2)=1(3)= (4)(ab)÷(ab)·=abA1 B2 C3 D42把约分。参考答案【基础知识检测】1(1)分子与分母的公因式约去(2)分子与分母分解因式 约去公因式(3)25b2c; (4)1;2(1)B (2)B(3)D3(1) (2)abc(3) (4)【创新能力运用】1B2分式(四)第四课时 9.3 分式的乘除法(1)一、目标要求1理解并掌握分式约分的概念及约分的方法;2能熟练地进行约分;3理解并掌握最简分式的意义。二、重点难点重点是约分及最简分式的意义。难点是分式的约分。1根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。2约分的步骤主要是:把分式的分子与分母分解因式,然后约去分子与分母的公因式。如:=。3一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的结果均要化为最简分式,而约分是其重要途径。4分式的约分是分式的分子与分母整体进行的,分式的分子和分母必须都是乘积的形式,才能进行约分。三、解题方法指导【例1】约分:(1) (2)(3) (4)分析:约分是把分子、分母的公因式约去,因此要找出分母、分子的公因式。当分子、分母是多项式时,必须将分子、分母分解因式。(1)找出分子、分母的公因式,注意分式分子有负号,就先把负号提到分式的前面。(2)要将(ab)与(ba)统一成(ab),因为(ab)3=(ba)3,(ab)4=(ba)4,为避免出现负号,考虑将分母(ab)4变为(ba)4。(3)分子与分母都是多项式,先把它们分解因式,然后约分。(4)分式的分子与分母虽然是积的形式,但没有公因式,并且每一个因式都还能分解,因此先分解再约分。解:(1)原式=。(2)原式=。(3)原式=。(4)原式=1。【例2】下列分式、中最简分式的个数是 ( )A1 B2 C3 D4分析:最简分式是分子与分母无公因式。因此可知判断一个分式是否是最简分式的关键是要看分子与分母是否有公因式。第一个分式的分子15bc与分母12a有公因式3;第二个分式的分子2(ab)2与分母ba有公因式ba;第三个分式的分子与分母没有公因式;第四个分式的分子a2b2与分母ab有公因式ab。解:选A。四、激活思维训练知识点:分式的约分【例】判断下列约分是否正确?为什么?(1)=0 (2)=(3)= (4)=分析:看一看它们的约分是否符合约分的原则。解:(1)不正确。因为分式的分子与分母相同,约分后其结果应为1。(2)不正确。因为分式的分子与分母不是乘积形式,不可约分。(3)正确。因为它遵循了分式约分的原则。(4)不正确。因为分式的分子与分母经过因式分解后,约分时违反了分式的符号法则。五、基础知识检测1填空题:(1)根据分式的基本性质,把一个分式的 叫做分式的约分。(2)将一个分式约分的主要步骤是:先把分式的 ,然后 。(3)分式的分子与分母中都有因式 ,约分后得 。(4)将约分后得结果是 ;约分后得结果是 。2选择题:(1)下列各式的约分运算中,正确的是 ( )A=ab B=1C=1 D=ab(2)下列各式中最简分式是 ( )A BC D (3)若分式的值恒为正,则的取值范围是 ( )Aa<2 Ba3Ca>2 Da>2且a33将下列分式约分:(1) (2)(3) (4)六、创新能力运用1下列各式计算中,正确的有( )个(1)= (2)=1(3)= (4)(ab)÷(ab)·=abA1 B2 C3 D42把约分。参考答案【基础知识检测】1(1)分子与分母的公因式约去(2)分子与分母分解因式 约去公因式(3)25b2c; (4)1;2(1)B (2)B(3)D3(1) (2)abc(3) (4)【创新能力运用】1B2分式(七)第七课时 9.4 分式的通分一、目标要求1、理解分式通分、最简公分母的概念。2、掌握通分的方法,并能熟练地进行通分。3、能正确熟练地找最简公分母。二、重点难点重点:分式的通分。难点:确定最简公分母。1、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。2、通分的关键大确定几个分母的最简公分母。3、找最简公分母的方法步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数。(2)找字母:凡各分母因式中出现的所有字母或含字母的式子都要选取。(3)找指数:取分母因式中出现的所有字母或含字母的式子中指数最大的。这样取出的因式的积,就是最简公分母。三、解题方法指导【例1】通分:(1),;(2),。分析:先找到每组分式的最简公分母,再根据分式的基本性质通分。(1)的分母系数的最小公倍数是120,字母x,y,z的最高次幂分别是x3,y3,z2,所以最简公分母是120 x3y3z2;(2)的分母系数的最小公倍数是36,字母a,b的最高次幂分别是a4,b3,所以最简公分母是36 a4b3。解:(1) 最简公分母是120 x3y3z2, ,。(2) 最简公分母是36 a4b3, ,。【例2】通分:(1),;(2),。分析:这两组分式的分母都是多项式,首先把各分母按同一字母降幂排列,后分解因式,然后确定最简公分母。解:(1) x23x2(x1)(x2),x2x6(x3)(x2),x22x3(x3)(x1), 它们的最简公分母是(x1)(x2)(x3)。,。(2) 最简公分母是3(a1)(a2)(a3), ,。注意:分母是多项式,要对分母进行因式分解,并注意统一字母排列顺序(一般按某一字母的降幂排列);分母的系数是负数的,一般把负号提到分式本身前面去。四、激活思维训练知识点:通分【例】通分:,。分析:这组分式的系数不是整数,那么首先根据分式的基本性质,把它们化成整数系数后,再求各系数的最小公倍数进行通分。解:,。 最简公分母是3(x3y)(x3y)(x2y)(2x5y), ,。五、基础知识检测1、填空题:(1),的最简公分母是 。(2),4(b2)的最简公分母是 。(3)分式,的最简公分母是 。(4)分式,的最简公分母是 。2、选择题:(1)求最简公分母时,如果各分母的系数都是整数,那么最简公分母的系数通常取 ( )A各分母系数的最小者 B各分母系数的最小公倍数C各分母系数的公倍数 D各分母系数的最大公约数(2)分式,的最简公分母是 ( )A(mn)(m2n2) B(m2n2)2C(mn)2(mn) Dm2n2(3),的最简公分母是 ( )A(x3)2(x2)(x2) B(x29)(x24)C(x29)2(x4)2 D(x3)2(x3)2(x22)(x2)3、通分:,。六、创新能力运用通分:(1),;(2),。参考答案【基础知识检测】1、(1)24ab (2)6(ab)(b2)(3)2(x1)2 (4)2(x1)(x1)2、(1)B (2)D (3)B3、, ,。【创新能力运用】(1),;(2),。分式(六)第六课时 9.3 分式的乘除法(3)一、目标要求1理解并掌握分式的乘方法则。2能正确熟练地运用乘方法则进行运算。二、重点难点重点:分式的乘方法则及应用、整数指数幂的运算性质及应用。难点:整数指数幂的运算性质及应用。1分式的乘方是把分子、分母各自乘方。用式子表示为:()n=(其中n为正整数)。2分式的乘方,乘除法的混合运算,注意运算顺序及乘方的符号法则。3整数指数幂的运算性质:(1)aman=am+n(m,n都为整数)(2)(am)n=amn(m,n均为整数)(3)(ab)n=anbn(n是整数)。三、解题方法指导【例1】计算:(1)()2(2)()2÷()2÷()2·(3)()2÷(a2n2anbnb2n)·()2分析:分式的乘方要按照乘方法则及乘方的符号法则进行,分式的乘方、乘除法的混合运算,根据运算顺序先乘方,再乘除,将除法转化为乘法。解:(1)原式=。(2)原式=···=1。(3)原式=2··2=(anbn)2。【例2】计算下列各式,并把结果化为只含有正整数指数的形式:(1)()3(2)(ab)-2÷()4·(ab)-32分析:按整数幂的运算性质进行计算。解:(1)原式=。(2)原式=(ab)-2··(ab)-6=(ab)-2+4·(ab)-4-6=(ab)2·(ab)-10=。四、激活思维训练知识点:分式乘方的灵活运用【例】计算:4·()3·÷()5。分析:这是含有乘方、乘、除的混合运算,应先乘方,再乘除,当分式中的分子或分母含有多项式时,不要用多项式的乘方处理,也不要展开,应写作幂的形式。解:原式=···=y2。说明:在写成幂的形式之前,能分解的多项式要先因式分解,然后再乘方。五、基础知识检测2选择题:3计算:(1)()5÷()2÷()3(2)·÷(3)()4·()3六、创新能力运用1计算:()3÷()2·()2。2化简求值:·÷,其中:x=1999,y=1。参考答案【基础知识检测】1(1)分子、分母 (2)am+namnanbn(3) (4) (5)2(1)B (2)B (3)C3(1) (2) (3)【创新能力运用】1 2,666分式的乘除法(第二教时)一、教学目标知识目标1了解并掌握分式乘除法运算法则。2会运用分式乘除法法则进行分式乘除法运算。能力目标1会通过类比的方法来理解和掌握分式的乘除法法则。2熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。情感目标1继续熟悉“数、式通性”的数学思想方法。2会通过类比的方法来理解和掌握分式的乘除法法则。二、重点难点和关键重点会用分式乘除法法则进行分式乘除法的运算。难点会将多项式因式分解。关键将除法转化为乘法进行计算。三、教学方法和辅助手段教学方法讲练结合、以练为主辅助手段幻灯投影演示四、教学过程复习1计算:(1)(2) (3) (4)2分数的乘除法法则是什么?新课讲解1分式的乘除法法则提问:由分数的乘除法法则猜想分式的乘除法法则是什么?(讨论、交流、集中评讲)分式乘除法法则:(略)式子表示:2例题讲解例2 计算: (解略)注意:1.计算过程要对照分式乘除法法则,将乘除法全部化为乘法进行。2.第三题中的(-8xyz)应看成分母是“1”的式子。3.计算结果要化为最简分式或整式。4运算过程中要注意符号的变化。 练习:P67 T1(板演)例3 计算:(解略)注意:分式乘除法运算时,分子分母中的多项式要先因式分解,再约分。练习:P67 T2(1)(4)(板演)例4 计算:解: = =注意:1分子分母中的多项式一般要先按某一字母降幂或升幂排列。2同级运算中,如没有附加条件(如括号),则应按从左到右的顺序进行计算。练习:P67 T(5)(板演)小结这节课学习了运用“分式乘除法法则”进行分式乘除法的方法,主要借助分式约分、因式分解等知识来进行,计算的结果应是最简分式或整式。作业P73 A组T4 T5 T6五、板书设计(略)六、教学后记分式(五)第五课时 9.3 分式的乘除法(2)一、目标要求1理解掌握分式乘除法运算法则。2能熟练地运用分式乘除法运算法则进行分式的乘除运算。二、重点难点重点是分式乘除法法则。难点是分子或分母为多项式的分式的乘除法。1分式的乘除法法则:(1)分式乘以分式,用分子的积做积的分子,分母的积做积的分母,用式子表示为·=;(2)分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘,用式子表示为÷=·=。2遇到分式的乘方、乘、除法的混合运算,首先要注意运算顺序,即先乘方、后乘除,而除法运算又应根据其法则转化为乘法运算;其次要注意运算符号法则与分式的符号法则,最后在约分时要注意分子与分母是为积的形式,若不是则应进行因式分解。3分式的运算中不能去分母,因为去分母是等式的性质,而分式不是等式,分式的运算只是对分式进行恒等变形。三、解题方法指导【例1】计算:(1)3x2y··();(2)6x3y2÷()·÷x2;(3)()÷()·()分析:分式的分子与分母是单项式的乘除,先将除法转化为乘法,根据分式的乘法法则,先确定结果的符号,然后将系数相乘除,其余的因式按指数法则运算。解:(1)原式=3x2y··=1。(2)原式=6x3y2·()··=6x3y2···=。(3)原式=()·()·()=··=。【例2】计算:(1)÷·。(2)÷(x3)·分析:分式的乘除混合运算,首先将除法转化为乘法,将分子、分母因式分解后进行约分。解:(1)原式=··=。(2)原式=÷(x3)·=··=。注意:(1)分式的分子、分母是多项式时,一般先按某一字母的降幂排列,再分解因式,并在运算过程中约分,使运算简化。(2)分式除法中,除式是整式时,可以看作分母是1的式子。要注意乘除法是属于同一级运算,必须严格按从左到右的顺序。四、激活思维训练知识点:分式的乘除法运算【例】已知m=,求代数式÷的值。分析:首先应将代数式化简,然后把已知条件变形后代入,即可求出其值。解:÷=·=(m2)(m2)=m24。 m=, m2=1。 原式=m24=14=3。五、基础知识检测六、创新能力运用。参考答案【基础知识检测】1(1)分子的积做分子、分母的积做分母、分子、分母,相乘(2) (3)x= (4)2(1)D (2)D3(1) (2)(3) (4)【创新能力运用】1 2分式(八)第八课时 9.4 分式的加减法(1)一、目标要求1、理解掌握同分母分式的加减法法则。2、能正确熟练地进行同分母分式的加减运算。二、重点难点重点:同分母分式的加减法法则和运算。难点:同分母分式的加减运算。1、同分母分式的加减法与同分母分数的加减法的法则类似,即分母不变,分子相加减,用式子表示是:±=。2、分数线的括号作用:在处理符号变化问题时,需考虑分子或分母的整体性。三、解题方法指导【例】计算:(1);(2);(3)。分析:(1)按同分母分式的加减法直接进行计算;(2)由于2x3y与3y2x是互为相反数,故可用分式的符号变化法将分母3y2x化为2x3y,转化为同分母分式的加减法;(3)分母情况与(2)类似。解:(1)原式=。(2)原式= =0。(3)原式=3。说明:在做减法时,为了避免出错误,最好添上一个括号,去括号时注意变号。四、激活思维训练知识点:同分母分式的加减【例】计算:。分析:分母中字母的排列顺序不同,首先统一字母的排列顺序,这样分母就相同了。解:原式=。注意:运算结果应该是最简分式,必须约去分子、分母中的公因式。五、基础知识检测1、填空题:(1)同分母分式相加减, 不变, 相加减。(2)计算:= 。(3)计算:= 。(4)。2、选择题:(1)计算:的结果是 ( )A、 B、C、 D、1(2)计算的结果是 ( )A、 B、C、 D、(3)计算的结果是 ( )A、 B、C、 D、3、计算:(1);(2);(3)。六、创新能力运用1、计算:。2、若=,求A。参考答案【基础知识检测】1、(1)分母、分子 (2)(3) (4)2、(1)B (2)D(3)C3、(1)0 (2)(3)【创新能力运用】1、 2、a3b分式(九)第九课时 9.4 分式的加减法(2)一、目标要求1理解掌握异分母分式加减法法则。2能正确熟练地进行异分母分式的加减运算。二、重点难点重点:异分母分式的加减法法则及其运用。难点:正确确定最简公分母和灵活运用法则。1异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。2分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。三、解题方法指导【例1】 计算:(1);(2)x1;(3)。分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意x1=,要注意负号问题。解:(1)原式=;(2)原式=;(3)原式=。【例2】计算:。分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。解:原式=。四、激活思维训练知识点:异分母分式的加减【例】计算:。分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。解:原式=x+2x+3+1=x+2x31=。五、基础知识检测1填空题:(1)异分母分式相加减 , 的分式,然后再加减。(2)计算:的结果是 。(3)计算:a2a1= 。(4)计算:= 。(5)已知+=,则m= 。2选择题:(1)使代数式÷有意义的值是 ( )Ax4且x2 Bx5且x3 Cx5且x3 Dx5且x3且x2 (2)计算:x+1的结果是 ( )A BC D(3)若xy=xy0,那么等于 ( )A B C0 D1(4)已知=3,则的值是 ( )A B C0 D2(5)化简得 ( )A B Ca2 Da2b3计算:(1);(2)x;(3)1。4先化简,再求值:·,其中x=,y=3。六、创新能力运用计算:(1);(2)2参考答案【基础知识检测】1(1)先通分,化为同分母 (2) (3) (4) (5)2(1)D (2)C(3)D (4)B(5)A3(1) (2)(3)4,【创新能力运用】(1) (2)分式(十)第十课时 9.4 分式的加减法(3)一、目标要求1理解掌握分式的四则混合运算的顺序。2能正确熟练地进行分式的加、减、乘、除混合运算。二、重点难点重点:分式的加、减、乘、除混合运算的顺序。难点:分式的加、减、乘、除混合运算。分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。三、解题方法指导【例1】计算:(1)()·;(2)(xy)(xy)÷3(xy)。分析:分式的四则混合运算要注意运算顺序及括号的关系。解:(1)原式=·=·=·=。(2)原式=·÷=··=yx。【例2】计算:(1)()·(a3b3);(2)()÷。解:(1)原式=ab=a2abb2(a2b2)ab= a2abb2a2b2ab =2b2。(2)原式=·=。说明:分式的加、减、乘、除混合运算注意以下几点:(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。(3)注意括号的“添”或“去”、“变大”与“变小”。(4)结果要化为最简分式。四、激活思维训练知识点:求分式的值【例】已知x=3,求下列各式的值:(1)x2 ; (2)x3;(3)。分析:观察已知条件和所求式,可将所求的式进行分解因式,将已知条件整体代入,第(3)题是先求它的倒数值,可以将x2=7直接代入,求得它的值。此外对于已知条件x=3,可以变形为x23x1=0,也可以变形为=1,在后两种表达形式下,要能熟练地将它转化为x=3。解:(1)x2=(x)22=322=7;(2)x3=(x)( x21) =3×(71)=18;(3) = x21=71=8, =。五、基础知识检测1填空题:(1)计算:(xy)2·= 。(2)计算:·= 。(3)计算:·= 。2选择题:(1)已知=,则下列各式中不正确的是 ( )A= B=C= D=(2)已知3x24xyy2=0(x,y0),则的值为( )A2或3 B2或3C2 D3(3)已知的值为,则的值为 ( )A B C D3计算:(1)1(a)2·;(2)a3b3·()·()。六、创新能力运用1已知:xyz=3y=2z,求的值。2已知:=3,求的值。平行四边形及其性质(一)一、教学目标1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、理解两条平行线的距离的概念4、培养学生综合运用知识的能力二、重点难点和关键重点:平行四边形的概念和性质1和性质2难点:平行四边形的性质1和性质2的应用三、教学过程复习1、什么是四边形?四边形的一组对边有怎样的位置关系?2、一般四边形有哪些性质?3、平行线的判定和性质有哪些?新课讲解1、引入在四边形中,最常见、价值最大的是平行四边形,如推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?2、平行四边形的定义:(1)定义:

    注意事项

    本文(新课标人教版八年级数学下全册教案教学设计全册.doc)为本站会员(青****9)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开